0
Research Papers

Micromechanical Modeling of the Ratcheting Behavior of 304 Stainless Steel

[+] Author and Article Information
I. Ben Naceur

UGPMM,
Ecole Nationale d'Ingénieurs de Sfax,
Sfax BP 1173, Tunisia

K. Saï

UGPMM,
Ecole Nationale d'Ingénieurs de Sfax,
Sfax BP 1173, Tunisia
e-mail: kacemsai@yahoo.fr

T. Hassan

Department of Civil, Construction
and Environmental Engineering,
North Carolina State University,
Raleigh, NC 27695-7908

G. Cailletaud

Centre des Matériaux,
MINES ParisTech,
PSL Research University,
CNRS UMR/7633,
Evry BP 87 91003, France

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received December 16, 2014; final manuscript received December 2, 2015; published online January 22, 2016. Assoc. Editor: Said Ahzi.

J. Eng. Mater. Technol 138(2), 021005 (Jan 22, 2016) (8 pages) Paper No: MATS-14-1245; doi: 10.1115/1.4032154 History: Received December 16, 2014; Revised December 02, 2015

Numerical simulations of 304 austenitic stainless steel (SS304) cyclic and ratcheting responses are performed using polycrystalline plasticity models. On the basis of the polycrystalline model of Cailletaud and Pilvin (1994, “Utilisation de modèles polycristallins pour le calcul par éléments finis,” Rev. Eur. Élém. Finis, 3, pp. 515–541), a modification of the β rule that operates the transition between the macroscopic level and the grain level is proposed. The improvement of the transition rule is obtained by introducing a “memory variable” at the grain level, so that a better description of the local stress–strain behavior is provided. This new feature is calibrated by means of previous simulations using finite element (FE) aggregate models. The results of the updated polycrystalline plasticity model are in good agreement with the macroscopic responses.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Krishna, S. , Hassan, T. , Ben Naceur, I. , Saï, I. , and Cailletaud, G. , 2009, “ Macro Versus Micro-Scale Constitutive Models in Simulating Proportional and Nonproportional Cyclic and Ratcheting Responses of Stainless Steel 304,” Int. J. Plast., 25(10), pp. 1910–1949. [CrossRef]
Cailletaud, G. , and Pilvin, P. , 1994, “ Utilisation de modèles polycristallins pour le calcul par éléments finis,” Rev. Eur. Élém. Finis, 3, pp. 515–541.
Megahed, M. , 1984, “ Kinematic Hardening Analysis of Ratchet Strain in the Pulley Test,” Int. J. Mech. Sci., 26, pp. 649–659. [CrossRef]
Ohno, N. , 1998, “ Constitutive Modeling of Cyclic Plasticity With Emphasis on Ratchetting,” Int. J. Mech. Sci., 40, pp. 251–261. [CrossRef]
Kang, G. , Gao, Q. , and Yang, X. , 2002, “ Uniaxial Cyclic Ratchetting and Plastic Flow Properties of SS304 Stainless Steel at Room and Elevated Temperatures,” Mech. Mater., 34(3), pp. 145–159. [CrossRef]
Yoshida, F. , and Uemori, T. , 2003, “ A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation,” Int. J. Mech. Sci., 45(10), pp. 1687–1702. [CrossRef]
Vincent, L. , Calloch, S. , and Marquis, D. , 2004, “ A General Cyclic Plasticity Model Taking Into Account Yield Surface Distortion for Multiaxial Ratchetting,” Int. J. Plast., 20(10), pp. 1817–1850. [CrossRef]
Abdel-Karim, M. , 2005, “ Numerical Integration Method for Kinematic Hardening Rules With Partial Activation of Dynamic Recovery Term,” Int. J. Plast., 21(7), pp. 1303–1321. [CrossRef]
Kang, G. , Kan, Q. , Zhang, J. , and Sun, Y. , 2006, “ Time-Dependent Ratchetting Experiments of SS304 Stainless Steel,” Int. J. Plast., 22(5), pp. 858–894. [CrossRef]
Saï, K. , and Cailletaud, G. , 2007, “ Multi-Mechanism Models for the Description of Ratchetting: Effect of the Scale Transition Rule and of the Coupling Between Hardening Variables,” Int. J. Plast., 23(9), pp. 1589–1617. [CrossRef]
Kang, G. , 2008, “ Ratchetting: Recent Progresses in Phenomenon Observation, Constitutive Modeling and Application,” Int. J. Fract., 30(8), pp. 1448–1472.
Chen, G. , Shan, S.-C. , Chen, X. , and Yuan, H. , 2009, “ Ratcheting and Fatigue Properties of the High-Nitrogen Steel X13CrMnMoN18-14-3 Under Cyclic Loading,” Comput. Mater. Sci., 46(3), pp. 572–578. [CrossRef]
Taleb, L. , and Cailletaud, G. , 2010, “ An Updated Version of the Multimechanism Model for Cyclic Plasticity,” Int. J. Plast., 26(6), pp. 859–874. [CrossRef]
Saï, K. , Taleb, L. , Guesmi, F. , and Cailletaud, G. , 2014, “ Multi-Mechanism Modeling of Proportional and Non-Proportional Ratchetting of Stainless Steel 304,” Acta Mech., 225(11), pp. 3265–3283. [CrossRef]
Evrard, P. , Aubin, V. , Pilvin, P. , Degallaix, S. , and Kondo, D. , 2008, “ Implementation and Validation of a Polycrystalline Model for a Bi–Phased Steel Under Non-Proportional Loading Paths,” Mech. Res. Commun., 35(5), pp. 336–343. [CrossRef]
Cailletaud, G. , and Saï, K. , 2008, “ A Polycrystalline Model for the Description of Ratchetting: Effect of Intergranular and Intragranular Hardening,” Mater. Sci. Eng. A, 480, pp. 24–39. [CrossRef]
Boudifa, M. , Saanouni, K. , and Chaboche, J. , 2009, “ A Micromechanical Model for Inelastic Ductile Damage Prediction in Polycrystalline Metals for Metal Forming,” Int. J. Mech. Sci., 51(6), pp. 453–464. [CrossRef]
Hlilou, A. , Ben Naceur, I. , Saï, K. , Forest, S. , Gérard, C. , and Cailletaud, G. , 2009, “ Generalization of the Polycrystalline β–Model: Finite Element Assessment and Application to Softening Material Behavior,” Comput. Mater. Sci., 45(4), pp. 1104–1112. [CrossRef]
Abdeljaoued, D. , Ben Naceur, I. , Saï, K. , and Cailletaud, G. , 2009, “ A New Polycrystalline Plasticity Model to Improve Ratchetting Strain Prediction,” Mech. Res. Commun., 36(3), pp. 309–315. [CrossRef]
Hassan, T. , and Kyriakides, S. , 1994, “ Ratcheting of Cyclically Hardening and Softening Materials: I. Uniaxial Behavior,” Int. J. Plast., 10(2), pp. 149–184. [CrossRef]
Méric, L. , Poubanne, P. , and Cailletaud, G. , 1991, “ Single Crystal Modeling for Structural Calculations. Part 1: Model Presentation,” ASME J. Eng. Mater. Technol., 113(1), pp. 162–170. [CrossRef]
Molinari, A. , Ahzi, S. , and Kouddane, R. , 1997, “ On the Self-Consistent Modeling of Elastic-Plastic Behavior of Polycrystals,” Mech. Mater., 26(1), pp. 43–62. [CrossRef]
Hill, R. , 1965, “ Continuum Micro-Mechanisms of Elastoplastic Polycrystals,” J. Mech. Phys. Solids, 13(2), pp. 89–101. [CrossRef]
Berveiller, M. , and Zaoui, A. , 1979, “ An Extension of the Self-Consistent Scheme to Plastically-Flowing Polycrystals,” J. Mech. Phys. Solids, 26(5–6), pp. 325–344. [CrossRef]
Cailletaud, G. , Forest, S. , Jeulin, D. , Feyel, F. , Galliet, I. , Mounoury, V. , and Quilici, S. , 2003, “ Some Elements of Microstructural Mechanics,” Comput. Mater. Sci., 27(3), pp. 351–374. [CrossRef]
Saï, K. , Cailletaud, G. , and Forest, S. , 2006, “ Micro-Mechanical Modeling of the Inelastic Behavior of Directionally Solidified Materials,” Mech. Mater., 38(3), pp. 203–217. [CrossRef]
Martin, G. , Ochoa, N. , Saï, K. , Hervé-Luanco, E. , and Cailletaud, G. , 2014, “ A Multiscale Model for the Elastoviscoplastic Behavior of Directionally Solidified Alloys: Application to FE Structural Computations,” Int. J. Solids Struct., 51(5), pp. 1175–1187. [CrossRef]
Dick, T. , and Cailletaud, G. , 2006, “ Fretting Modelling With a Crystal Plasticity Model of Ti6Al4V,” Comput. Mater. Sci., 38(1), pp. 113–125. [CrossRef]
Besson, J. , Leriche, R. , Foerch, R. , and Cailletaud, G. , 1998, “ Object-Oriented Programming Applied to the Finite Element Method. Part II. Application to Material Behaviors,” Rev. Eur. Élém. Finis, 7(5), pp. 567–588.
Stoer, J. , 1985, “ Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs,” Computational Mathematical Programming (NATO ASI Series), K. Schittkowski , ed., Vol. 15, Springer Verlag, Berlin.

Figures

Grahic Jump Location
Fig. 1

Illustration of the issue raised with the original β–model: (a) Experimental tensile stress–strain curves in x1 direction [28], (b) comparison between the experimental and simulated macroscopic stress–strain curves, (c) simulated local stress–strain curves for each grain orientation, and (d) distribution of the local strain for all the grains

Grahic Jump Location
Fig. 2

Simulation of the Ti-6Al-4V responses using modified β–model: ((a) and (b)) comparison of a macroscopic tensile stress–strain response of Ti-6Al-4V and its simulation by the mean field model, (c) improved simulation of local grain level strain, and (d) number of grains at various grain deformations

Grahic Jump Location
Fig. 3

Experimental uniaxial ratcheting responses of 304SS and corresponding simulations from updated and original β–model: (a) experiment, (b) experiment, (c) updated β–model, (d) updated β–model, (e) original β–model, and (f) original β–model

Grahic Jump Location
Fig. 4

Experimental uniaxial ratcheting responses of 304SS and corresponding simulations from updated and original β–model: (a) experiment, (b) experiment, (c) updated β–model, (d) updated β–model, (e) original β–model, and (f) original β–model

Grahic Jump Location
Fig. 5

Experimental axial strain ratcheting rates of 304SS and corresponding simulations from updated and original β-model

Grahic Jump Location
Fig. 6

Axial stress amplitude (σxa) and mean (σxm) responses of 304SS from multiple step experiments and corresponding simulations from updated and original β–models: (a) multiple axial strain amplitude and (b) multiple axial strain mean

Grahic Jump Location
Fig. 7

Axial stress amplitude (σxa) and mean (σxm) responses of 304SS from biaxial strain-controlled experiments and corresponding simulations from updated and original β–models

Grahic Jump Location
Fig. 8

Experimental circumferential strain ratcheting rates of 304SS from biaxial strain-controlled experiments and corresponding simulations from updated and original β–models

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In