Montella,
G.
,
Calabrese,
A.
, and
Serino,
G.
, 2012, “
Experimental and Numerical Investigations on Innovative Floating-Slab Track Including Recycled Rubber Elements,” 25th International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, Sept. 17–19, Vol.
5805, pp. 2869–2880.

Arruda,
E.
, and
Boyce,
M.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids,
41(2), pp. 389–412.

[CrossRef]
Mooney,
M.
, 1940, “
A Theory of Large Elastic Deformation,” J. Appl. Phys.,
11(9), pp. 582–592.

[CrossRef]
Ogden,
R.
, 1972, “
Large Deformation Isotropic Elasticity-on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids,” Proc. R. Soc. London, Ser. A,
326(1567), pp. 565–584.

[CrossRef]
Montella,
G.
,
Calabrese,
A.
, and
Serino,
G.
, 2014, “
Mechanical Characterization of a Tire Derived Material: Experiments, Hyperelastic Modeling and Numerical Validation,” Constr. Build. Mater.,
66, pp. 336–347.

[CrossRef]
Ogden,
R.
,
Saccomandi,
G.
, and
Sgura,
I.
, 2004, “
Fitting Hyperelastic Models to Experimental Data,” Comput. Mech.,
34(6), pp. 484–502.

[CrossRef]
Becker,
G.
, 1893, “
The Finite Elastic Stress-Strain Function,” Am. J. Sci.,
46, pp. 337–356.

[CrossRef]
Neff,
P.
,
Münch,
I.
, and
Martin,
R.
, 2014, “
Rediscovering G.F. Becker's Early Axiomatic Deduction of a Multiaxial Nonlinear Stress-Strain Relation Based on Logarithmic Strain,” Math. Mech. Solids (epub ahead of print).

Ludwik,
P.
, 1909, Elemente der Technologischen Mechanik,
Springer-Verlag,
Berlin.

Hencky,
H.
, 1928, “
Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen,” Z. Tech. Phys.,
9(6), pp. 215–220.

Hencky,
H.
, 1929, “
Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?,” Z. Phys.,
55(3), pp. 145–155.

[CrossRef]
Neff,
P.
,
Eidel,
B.
, and
Martin,
R.
, 2014, “
The Axiomatic Deduction of the Quadratic Hencky Strain Energy by Heinrich Hencky (a New Translation of Hencky's Original German Articles),” e-print arXiv:1402.4027.

Anand,
L.
, 1979, “
On H. Hencky's Approximate Strain Energy Function for Moderate Deformations,” ASME J. Appl. Mech.,
46(1), pp. 78–82.

[CrossRef]
Hsu,
T.
,
Davies,
S.
, and
Royles,
R.
, 1967, “
A Study of the Stress-Strain Relationship in the Work-Hardening Range,” ASME J. Basic Eng.,
89(3), pp. 453–457.

[CrossRef]
Sharda,
S.
, 1974, “
I. A New Elastic Potential Function for Rubbers. II. Thermoelastic Behavior of Rubbers,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.

Neff,
P.
,
Ghiba,
I.
, and
Lankeit,
J.
, 2015, “
The Exponentiated Hencky-Logarithmic Strain Energy—Part I: Constitutive Issues and Rank–One Convexity,” J. Elasticity,
121(2), pp. 143–234.

[CrossRef]
Neff,
P.
,
Ghiba,
I.
,
Lankeit,
J.
,
Martin,
R.
, and
Steigmann,
D.
, 2015, “
The Exponentiated Hencky-Logarithmic Strain Energy—Part II: Coercivity, Planar Polyconvexity and Existence of Minimizers,” Z. Angew. Math. Phys.,
66(4), pp. 1671–1693.

[CrossRef]
Neff,
P.
, and
Ghiba,
I.
, 2016, “
The Exponentiated Hencky-Logarithmic Strain Energy. Part III: Coupling With Idealized Isotropic Finite Strain Plasticity,” Continuum Mech. Thermodyn.,
28(1), pp. 477–487.

[CrossRef]
Neff,
P.
, and
Ghiba,
I.
, 2016, “
Loss of Ellipticity for Non-Coaxial Plastic Deformations in Additive Logarithmic Finite Strain Plasticity,” Int. J. Non-Linear Mech.,
81, pp. 122–128.

[CrossRef]
Neff,
P.
,
Eidel,
B.
,
Osterbrink,
F.
, and
Martin,
R.
, 2014, “
A Riemannian Approach to Strain Measures in Nonlinear Elasticity,” C. R. Méc.,
342(4), pp. 254–257.

[CrossRef]
Neff,
P.
,
Eidel,
B.
, and
Martin,
R.
, 2016, “
Geometry of Logarithmic Strain Measures in Solid Mechanics,” Arch. Ration. Mech. Anal. (submitted).

Neff,
P.
,
Nakatsukasa,
Y.
, and
Fischle,
A.
, 2014, “
A Logarithmic Minimization Property of the Unitary Polar Factor in the Spectral Norm and the Frobenius Matrix Norm,” SIAM J. Matrix Anal. Appl.,
35(3), pp. 1132–1154.

[CrossRef]
Bîrsan,
M.
,
Neff,
P.
, and
Lankeit,
J.
, 2013, “
Sum of Squared Logarithms: An Inequality Relating Positive Definite Matrices and Their Matrix Logarithm,” J. Inequalities Appl.,
2013(1), p. 168.

[CrossRef]
Lankeit,
J.
,
Neff,
P.
, and
Nakatsukasa,
Y.
, 2014, “
The Minimization of Matrix Logarithms: On a Fundamental Property of the Unitary Polar Factor,” Linear Algebra Its Appl.,
449, pp. 28–42.

[CrossRef]
Borisov,
L.
,
Neff,
P.
,
Sra,
S.
, and
Thiel,
C.
, 2016, “
The Sum of Squared Logarithms Inequality in Arbitrary Dimensions,” Linear Algebra Its Appl. (submitted).

Martin,
R.
,
Ghiba,
I.
, and
Neff,
P.
, 2016, “
Rank-One Convexity Implies Polyconvexity for Isotropic, Objective and Isochoric Elastic Energies in the Two-Dimensional Case,” Proc. R. Soc. Edinburgh, Sect. A: Math. (submitted).

Ghiba,
I.
,
Neff,
P.
, and
Šilhavý,
M.
, 2015, “
The Exponentiated Hencky-Logarithmic Strain Energy. Improvement of Planar Polyconvexity,” Int. J. Non-Linear Mech.,
71, pp. 48–51.

[CrossRef]
Ghiba,
I.
,
Neff,
P.
, and
Martin,
R.
, 2015, “
An Ellipticity Domain for the Distortional Hencky-Logarithmic Strain Energy,” Proc. R. Soc. A,
471(2184), p. 20150510.

[CrossRef]
Treloar,
L.
, 1944, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation,” Trans. Faraday Soc.,
40, pp. 59–70.

[CrossRef]
Jones,
D.
, and
Treloar,
L.
, 1975, “
The Properties of Rubber in Pure Homogeneous Strain,” J. Phys. D: Appl. Phys.,
8(11), pp. 1285–1304.

[CrossRef]MathWorks, 2014, “
Image Processing Toolbox Users Guide,” MATLAB 2014b,
The MathWorks Inc.,
Natick, MA.

Kakavas,
P.
, 2000, “
Prediction of the Nonlinear Poisson Function Using Large Volumetric Strains Estimated From a Finite Hyperelastic Material Law,” Polym. Eng. Sci.,
40(6), pp. 1330–1333.

[CrossRef]
Smith,
C.
,
Wootton,
R.
, and
Evans,
K.
, 1999, “
Interpretation of Experimental Data for Poisson's Ratio of Highly Nonlinear Materials,” Exp. Mech.,
39(4), pp. 356–362.

[CrossRef]
Helfenstein,
J.
,
Jabareen,
M.
,
Mazza,
E.
, and
Govindjee,
S.
, 2010, “
On Non-Physical Response in Models for Fiber-Reinforced Hyperelastic Materials,” Int. J. Solids Struct.,
47(16), pp. 2056–2061.

[CrossRef]
Vallée,
C.
, 1978, “
Lois de comportement élastique isotropes en grandes déformations,” Int. J. Eng. Sci.,
16(7), pp. 451–457.

[CrossRef]
Björck,
A.
, 1996, Numerical Methods for Least Squares Problems,
Society for Industrial and Applied Mathematics,
Philadelphia.

Aster,
R.
,
Borchers,
B.
, and
Thurber,
C.
, 2013, Parameter Estimation and Inverse Problems,
Academic Press,
Waltham, MA.

MathWorks, 2014, “
Optimization Toolbox Users Guide,” MATLAB 2014b,
The MathWorks Inc.,
Natick, MA.

Bueche,
F.
, 1960, “
Molecular Basis for the Mullins Effect,” J. Appl. Polym. Sci.,
4(10), pp. 107–114.

[CrossRef]
Bueche,
F.
, 1961, “
Mullins Effect and Rubber-Filler Interaction,” J. Appl. Polym. Sci.,
5(15), pp. 271–281.

[CrossRef]
Rigbi,
Z.
, 1980, “
Reinforcement of Rubber by Carbon Black,” Adv. Polym. Sci.,
36, pp. 21–68.

Payne,
A.
, 1962, “
The Dynamic Properties of Carbon Black-Loaded Natural Rubber Vulcanizates—Part I,” J. Appl. Polym. Sci.,
6(19), pp. 57–53.

[CrossRef]
Sidoroff,
F.
, 1974, “
Un modèle viscoèlastique non linèaire avec configuration intermèdiaire,” J. Mèc.,
13(4), pp. 679–713.

Oda,
M.
,
Konishi,
J.
, and
Nemat-Nasser,
S.
, 1982, “
Experimental Micromechanical Evaluation of Strength of Granular Materials: Effects of Particle Rolling,” Mech. Mater.,
1(4), pp. 269–283.

[CrossRef]
Jiang,
M.
,
Yu,
H.-S.
, and
Harris,
D.
, 2005, “
A Novel Discrete Model for Granular Material Incorporating Rolling Resistance,” Comput. Geotech.,
32(5), pp. 340–357.

[CrossRef]
Reese,
S.
, and
Govindjee,
S.
, 1998, “
A Theory of Finite Viscoelasticity and Numerical Aspects,” Int. J. Solids Struct.,
35(26–27), pp. 3455–3482.

[CrossRef]
Govindjee,
S.
, and
Reese,
S.
, 1997, “
A Presentation and Comparison of Two Large Deformation Viscoelasticity Models,” ASME J. Eng. Mater. Technol.,
119(3), pp. 251–255.

[CrossRef]