0
Research Papers

Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications

[+] Author and Article Information
Kun Mo

Nuclear Engineering Division,
Argonne National Laboratory,
Argonne, IL 60439
e-mail: kunmo@anl.gov

Wei Lv, Kuan-Che Lan, James F. Stubbins

Department of Nuclear, Plasma, and
Radiological Engineering,
University of Illinois at Urbana-Champaign,
104 South Wright Street,
Urbana, IL 61801

Hsiao-Ming Tung

Institute of Nuclear Energy Research,
Atomic Energy Council,
Taoyuan 325, Taiwan

Di Yun

Nuclear Engineering Division,
Argonne National Laboratory,
Argonne, IL 60439;
Department of Nuclear Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China

Yinbin Miao

Nuclear Engineering Division,
Argonne National Laboratory,
Argonne, IL 60439;
Department of Nuclear, Plasma, and
Radiological Engineering,
University of Illinois at Urbana-Champaign,
104 South Wright Street,
Urbana, IL 61801

1Corresponding author.

2K. Mo and W. Lv contributed equally to this work.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 8, 2014; final manuscript received March 24, 2016; published online May 18, 2016. Assoc. Editor: Said Ahzi.The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes.

J. Eng. Mater. Technol 138(3), 031015 (May 18, 2016) (8 pages) Paper No: MATS-14-1131; doi: 10.1115/1.4033322 History: Received June 08, 2014; Revised March 24, 2016

In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to be the primary candidate structural materials for very high-temperature reactors (VHTRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 °C for the effective stress range of 15–35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to be dominant over the entire creep lives of both alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form ε=Aσcosh1(1+rt)+Pσntm agree well with the experimental results for both alloys at the temperatures of 850–950 °C.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Creep , Alloys , Stress
Your Session has timed out. Please sign back in to continue.

References

Ren, W. J. , and Swindeman, R. , 2009, “ A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers,” ASME J. Pressure Vessel Technol., 131(4), p. 044002. [CrossRef]
Ren, W. J. , and Swimdeman, R. , 2009, “ A Review Paper on Aging Effects in Alloy 617 for Gen IV Nuclear Reactor Applications,” ASME J. Pressure Vessel Technol., 131(2), p. 024002. [CrossRef]
Hosier, J. C. , and Tillack, D. J. , 1972, “ Inconel Alloy 617—New High-Temperature Alloy,” Met. Eng. Q., 12(3), pp. 51–55.
Natesan, K. , Purohit, A. , and Tam, S. W. , 2003, “ Materials Behavior in HTGR Environments,” Argonne National Laboratory, U.S. Department of Energy, Lemont, IL, Report No. NUREG_CR6824.
Tawancy, H. M. , Klarstrom, D. L. , and Rothman, M. F. , 1984, “ Development of a New Nickel-Base Superalloy,” JOM, 36(9), pp. 58–62. [CrossRef]
Schubert, F. , Bruch, U. , Cook, R. , Diehl, H. , Ennis, P. J. , Jakobeit, W. , Penkalla, H. J. , Teheesen, E. , and Ullrich, G. , 1984, “ Creep-Rupture Behavior of Candidate Materials for Nuclear Process Heat Applications,” Nucl. Technol., 66(2), pp. 227–240.
Sharma, S. K. , Ko, G. D. , Li, F. X. , and Kang, K. J. , 2008, “ Oxidation and Creep Failure of Alloy 617 Foils at High Temperature,” J. Nucl. Mater., 378(2), pp. 144–152. [CrossRef]
Roy, A. K. , Hasan, M. H. , and Pal, J. , 2009, “ Creep Deformation of Alloys 617 and 276 at 750–950 °C,” Mater. Sci. Eng. A Struct. Mater., 520(1–2), pp. 184–188. [CrossRef]
Schneider, K. , Hartnagel, W. , Schepp, P. , and Ilschner, B. , 1984, “ Creep-Behavior of Materials for High-Temperature Reactor Application,” Nucl. Technol., 66(2), pp. 289–295.
Sharma, S. K. , Jang, C. , and Kang, K. J. , 2009, “ Effect of Thermo-Mechanical Processing on Microstructure and Creep Properties of the Foils of Alloy 617,” J. Nucl. Mater., 389(3), pp. 420–426. [CrossRef]
Lillo, T. , Cole, J. , Frary, M. , and Schlegel, S. , 2009, “ Influence of Grain Boundary Character on Creep Void Formation in Alloy 617,” Metall. Mater. Trans. A, 40(12), pp. 2803–2811. [CrossRef]
Schlegel, S. , Hopkins, S. , Young, E. , Cole, J. , Lillo, T. , and Frary, M. , 2009, “ Precipitate Redistribution During Creep of Alloy 617,” Metall. Mater. Trans. A, 40A(12), pp. 2812–2823. [CrossRef]
Chomette, S. , Gentzbittel, J. M. , and Viguier, B. , 2010, “ Creep Behaviour of as Received, Aged and Cold Worked INCONEL 617 at 850 °C and 950 °C,” J. Nucl. Mater., 399(2–3), pp. 266–274. [CrossRef]
Kim, W. G. , Yin, S. N. , Lee, G. G. , Kim, Y. W. , and Kim, S. J. , 2010, “ Creep Oxidation Behaviour and Creep Strength Prediction for Alloy 617,” Int. J. Pressure Vessels Piping, 87(6), pp. 289–295. [CrossRef]
Cabet, C. , Carroll, L. , and Wright, R. , 2013, “ Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature,” ASME J. Pressure Vessel Technol., 135(6), p. 061401. [CrossRef]
Carroll, L. J. , Cabet, C. , Carroll, M. C. , and Wright, R. N. , 2013, “ The Development of Microstructural Damage During High Temperature Creep-Fatigue of a Nickel Alloy,” Int. J. Fatigue, 47, pp. 115–125. [CrossRef]
Carroll, M. C. , and Carroll, L. J. , 2013, “ Developing Dislocation Subgrain Structures and Cyclic Softening During High-Temperature Creep-Fatigue of a Nickel Alloy,” Metall. Mater. Trans. A, 44(8), pp. 3592–3607. [CrossRef]
Krishna, R. , Hainsworth, S. V. , Gill, S. P. A. , Strang, A. , and Atkinson, H. V. , 2013, “ Topologically Close-Packed μ Phase Precipitation in Creep-Exposed Inconel 617 Alloy,” Metall. Mater. Trans. A, 44(3), pp. 1419–1429. [CrossRef]
Yun, H. M. , Ennis, P. J. , Nickel, H. , and Schuster, H. , 1984, “ The Effect of High-Temperature Reactor Primary Circuit Helium on the Formation and Propagation of Surface Cracks in Alloy 800-H and Inconel-617,” J. Nucl. Mater., 125(3), pp. 258–272. [CrossRef]
Shankar, P. S. , and Natesan, K. , 2007, “ Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications,” J. Nucl. Mater., 366(1–2), pp. 28–36. [CrossRef]
Lee, G. G. , Jung, S. , Park, J. Y. , Kim, W. G. , Hong, S. D. , and Kim, Y. W. , 2013, “ Microstructural Investigation of Alloy 617 Creep-Ruptured at High Temperature in a Helium Environment,” J. Mater. Sci. Technol., 29(12), pp. 1177–1183. [CrossRef]
Tung, H. M. , Mo, K. , and Stubbins, J. F. , 2014, “ Biaxial Thermal Creep of Inconel 617 and Haynes 230 at 850 and 950 °C,” J. Nucl. Mater., 447(1–3), pp. 28–37. [CrossRef]
Chatterjee, S. , and Roy, A. K. , 2010, “ Mechanism of Creep Deformation of Alloy 230 Based on Microstructural Analyses,” Mater. Sci. Eng. A Struct. Mater., 527(29–30), pp. 7893–7900. [CrossRef]
Roy, A. K. , Chatterjee, S. , Hasan, M. H. , Pal, J. , and Ma, L. , 2010, “ Crack-Growth Behavior of Alloy 230 Under Creep-Fatigue Conditions,” Mater. Sci. Eng. A Struct. Mater., 527(18–19), pp. 4830–4836. [CrossRef]
Boehlert, C. J. , and Longanbach, S. C. , 2011, “ A Comparison of the Microstructure and Creep Behavior of Cold Rolled HAYNES® 230 Alloy™ and HAYNES® 282 Alloy™,” Mater. Sci. Eng. A Struct. Mater., 528(15), pp. 4888–4898. [CrossRef]
Pataky, G. J. , Sehitoglu, H. , and Maier, H. J. , 2013, “ Creep Deformation and Mechanisms in Haynes 230 at 800 °C and 900 °C,” J. Nucl. Mater., 443(1–3), pp. 484–490. [CrossRef]
Pataky, G. J. , Sehitoglu, H. , and Maier, H. J. , 2013, “ High Temperature Fatigue Crack Growth of Haynes 230,” Mater. Charact., 75, pp. 69–78. [CrossRef]
Gross, D. W. , Nygren, K. , Pataky, G. J. , Kacher, J. , Sehitoglu, H. , and Robertson, I. M. , 2013, “ The Evolved Microstructure Ahead of an Arrested Fatigue Crack in Haynes 230,” Acta Mater., 61(15), pp. 5768–5778. [CrossRef]
Cappelaere, M. , Perrot, M. , and Sannier, J. , 1984, “ Behavior of Metallic Materials Between 550 and 870 °C in High-Temperature Gas-Cooled Reactor Helium Under Pressures of 2 and 50 Bar,” Nucl. Technol., 66(2), pp. 465–478.
Chen, X. , Yang, Z. Q. , Sokolov, M. A. , Erdman, D. L. , Mo, K. , and Stubbins, J. F. , 2014, “ Effect of Creep and Oxidation on Reduced Fatigue Life of Ni-Based Alloy 617 at 850 °C,” J. Nucl. Mater., 444(1–3), pp. 393–403. [CrossRef]
Chen, X. , Sokolov, M. A. , Sham, S. , Erdman, D. L. , Busby, J. T. , Mo, K. , and Stubbins, J. F. , 2013, “ Experimental and Modeling Results of Creep-Fatigue Life of Inconel 617 and Haynes 230 at 850 °C,” J. Nucl. Mater., 432(1–3), pp. 94–101. [CrossRef]
Chen, X. , Yang, Z. Q. , Sokolov, M. A. , Erdman, D. L. , Mo, K. , and Stubbins, J. F. , 2013, “ Low Cycle Fatigue and Creep-Fatigue Behavior of Ni-Based Alloy 230 at 850 °C,” Mater. Sci. Eng. A Struct. Mater., 563, pp. 152–162. [CrossRef]
Benz, J. K. , Carroll, L. J. , Wright, J. K. , Wright, R. N. , and Lillo, T. M. , 2014, “ Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures,” Metall. Mater. Trans. A, 45(7), pp. 3010–3022. [CrossRef]
Gilbert, E. , and Bates, J. , 1977, “ Dependence of Irradiation Creep on Temperature and Atom Displacements in 20% Cold Worked Type 316 Stainless Steel,” J. Nucl. Mater., 65, pp. 204–209. [CrossRef]
Vitek, J. , Braski, D. , and Horak, J. , 1986, “ Effect of Preinjected Helium on the Response of V-20Ti Pressurized Tubes to Neutron Irradiation,” J. Nucl. Mater., 141–143(Pt. 2), pp. 982–986. [CrossRef]
Tsai, H. , Matsui, H. , Billone, M. , Strain, R. , and Smith, D. , 1998, “ Irradiation Creep of Vanadium-Base Alloys,” J. Nucl. Mater., 258–263(Part 2), pp. 1471–1475. [CrossRef]
Tung, H.-M. , Mo, K. , and Stubbins, J. F. , 2014, “ Biaxial Thermal Creep of Inconel 617 and Haynes 230 at 850 and 950 °C,” J. Nucl. Mater., 447(1–3), pp. 28–37. [CrossRef]
Gilbert, E. R. , and Blackburn, L. D. , 1977, “ Creep Deformation of 20 Percent Cold-Worked Type 316 Stainless-Steel,” ASME J. Eng. Mater. Technol., 99(2), pp. 168–180. [CrossRef]
Li, M. , Nagasaka, T. , Hoelzer, D. , Grossbeck, M. , Zinkle, S. , Muroga, T. , Fukumoto, K. , Matsui, H. , and Narui, M. , 2007, “ Biaxial Thermal Creep of Two Heats of V4Cr4Ti at 700 and 800 °C in a Liquid Lithium Environment,” J. Nucl. Mater., 367–370(Part A), pp. 788–793. [CrossRef]
Fukumoto, K. , Matsui, H. , Narui, M. , Nagasaka, T. , and Muroga, T. , 2004, “ Manufacturing Pressurized Creep Tubes From Highly Purified V–4Cr–4Ti alloys, NIFS-Heat2,” J. Nucl. Mater., 335(1), pp. 103–107. [CrossRef]
Gelles, D. , Toloczko, M. , and Kurtz, R. , 2007, “ Thermal Creep Mechanisms in V–4Cr–4Ti Pressurized Tube Specimens,” J. Nucl. Mater., 367–370(Part A), pp. 869–875. [CrossRef]
Hishinuma, A. , Vitek, J. , Horak, J. , and Bloom, E. , 1982, “ Effect of Preinjected Helium on Swelling and Microstructure of Neutron Irradiated Pressurized Tubes of Type 316 Stainless Steel,” 11th Conference on Effects of Radiation on Materials, Scottsdale, AZ, June 28–30, ASTM STP 782, pp. 92–107.
Shrestha, T. , Basirat, M. , Charit, I. , Potirniche, G. P. , Rink, K. K. , and Sahaym, U. , 2012, “ Creep Deformation Mechanisms in Modified 9Cr-1Mo Steel,” J. Nucl. Mater., 423(1–3), pp. 110–119. [CrossRef]
Charit, I. , and Murty, K. L. , 2008, “ Creep Behavior of Niobium-Modified Zirconium Alloys,” J. Nucl. Mater., 374(3), pp. 354–363. [CrossRef]
Mo, K. , Lovicu, G. , Tung, H. M. , Chen, X. A. , and Stubbins, J. F. , 2011, “ High Temperature Aging and Corrosion Study on Alloy 617 and Alloy 230,” ASME J. Eng. Gas Turbines Power, 133(5), p. 052908. [CrossRef]
Mo, K. , Lovicu, G. , Chen, X. , Tung, H.-M. , Hansen, J. B. , and Stubbins, J. F. , 2013, “ Mechanism of Plastic Deformation of a Ni-Based Superalloy for VHTR Applications,” J. Nucl. Mater., 441(1–3), pp. 695–703. [CrossRef]
Mo, K. , Tung, H.-M. , Li, M. , Almer, J. , Chen, X. , Chen, W. , Hansen, J. B. , and Stubbins, J. , 2013, “ Synchrotron Radiation Study on Alloy 617 and Alloy 230 for VHTR Application,” ASME J. Pressure Vessel Technol., 135(2), p. 021502. [CrossRef]
Mo, K. , Lovicu, G. , Tung, H.-M. , Chen, X. , Miao, Y. , Hansen, J. B. , and Stubbins, J. F. , 2013, “ Effect of Orientation on Plastic Deformations of Alloy 617 for VHTR Applications,” J. Nucl. Mater., 443(1–3), pp. 366–377. [CrossRef]
Swindeman, R. W. , and Pugh, C. E. , 1974, “ Creep Studies on Type 304 Stainless Steel (Heat 8043813) Under Constant and Varying Loads,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL-TM-4427.

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the pressurized creep tube

Grahic Jump Location
Fig. 2

Diameter strain versus creep exposure time for alloy 617 at 900 °C

Grahic Jump Location
Fig. 3

Creep strain rate for alloy 617 with an applied stress of (a) 15 MPa, (b) 18 MPa, and (c) 30 MPa at 900 °C

Grahic Jump Location
Fig. 4

Diameter strain versus creep exposure time for alloy 230 at 900 °C

Grahic Jump Location
Fig. 5

Creep strain rate for alloy 230 with an applied stress of (a) 18 MPa, (b) 23 MPa, (c) 30 MPa, and (d) 35 MPa at 900 °C

Grahic Jump Location
Fig. 6

Stress exponent analysis for (a) alloy 617 and (b) alloy 230 at 900 °C

Grahic Jump Location
Fig. 7

Cross-sectional view of pressurized creep tubes near the fracture surface under the applied stress of 18 MPa at 900 °C for alloy 617

Grahic Jump Location
Fig. 8

Cross-sectional view of pressurized creep tubes near the fracture surface under the applied stress of 30 MPa at 900 °C for alloy 230

Grahic Jump Location
Fig. 9

Illustration of the analysis of stress–strain data of alloy 617 at 950 °C

Grahic Jump Location
Fig. 10

Experimental results and analytic description for (a) K(t) and (b) C(t)

Grahic Jump Location
Fig. 11

Comparison of computed creep curves with experimental data for alloy 617 at (a) 850 °C, (b) 900 °C, and (c) 950 °C

Grahic Jump Location
Fig. 12

Comparison of computed creep curves with experimental data for alloy 230 at (a) 850 °C, (b) 900 °C, and (c) 950 °C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In