Research Papers

Delamination-Based Measurement and Prediction of the Adhesion Energy of Thin Film/Substrate Interfaces

[+] Author and Article Information
Liangliang Zhu

International Center for Applied Mechanics
State Key Laboratory for Strength and
Vibration of Mechanical Structures,
International Center for Applied Mechanics,
School of Aerospace,
Xi'an Jiaotong University,
No. 28, Xianning West Road,
Xi'an, Shaanxi 710049, China;
Columbia Nanomechanics Research Center
Department of Earth and
Environmental Engineering,
Columbia University,
500 West 120th Street,
New York, NY 10027
e-mail: zhu.liangliang@stu.xjtu.edu.cn

Xi Chen

Fellow ASME
Columbia Nanomechanics Research Center,
Department of Earth and
Environmental Engineering,
Columbia University,
500 West 120th Street,
New York, NY 10027
e-mail: xichen@columbia.edu

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received August 10, 2016; final manuscript received October 4, 2016; published online February 9, 2017. Assoc. Editor: Taehyo Park.

J. Eng. Mater. Technol 139(2), 021021 (Feb 09, 2017) (4 pages) Paper No: MATS-16-1223; doi: 10.1115/1.4035497 History: Received August 10, 2016; Revised October 04, 2016

With the rapid emerging of two-dimensional (2D) micro/nanomaterials and their applications in flexible electronics and microfabrication, adhesion between thin film and varying substrates is of great significance for fabrication and performance of micro devices and for the understanding of the buckle delamination mechanics. However, the adhesion energy remains to be difficult to be measured, especially for compliant substrates. We propose a simple methodology to deduce the adhesion energy between a thin film and soft substrate based on the successive or simultaneous emergence of wrinkles and delamination. The new metrology does not explicitly require the knowledge of the Young's modulus, Poisson's ratio, and thickness of the 2D material, the accurate measurement of which could be a challenge in many cases. Therefore, the uncertainty of the results of the current method is notably reduced. Besides, for cases where the delamination width is close to the critical wrinkle wavelength of the thin film/substrate system, the procedure can be further simplified. The simple and experimentally easy methodology developed here is promising for determining/estimating the interface adhesion energy of a variety of thin film/soft substrate systems.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Genzer, J. , and Groenewold, J. , 2006, “ Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization,” Soft Matter, 2(4), p. 310. [CrossRef]
Yin, J. , Gerling, G. J. , and Chen, X. , 2010, “ Mechanical Modeling of a Wrinkled Fingertip Immersed in Water,” Acta Biomater., 6(4), pp. 1487–1496. [CrossRef] [PubMed]
Yin, J. , Cao, Z. , Li, C. , Sheinman, I. , and Chen, X. , 2008, “ Stress-Driven Buckling Patterns in Spheroidal Core/Shell Structures,” Proc. Natl. Acad. Sci. U. S. A., 105(49), pp. 19132–19135. [CrossRef] [PubMed]
Rogers, J. A. , Someya, T. , and Huang, Y. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Xu, S. , Yan, Z. , Jang, K. I. , Huang, W. , Fu, H. , Kim, J. , Wei, Z. , Flavin, M. , McCracken, J. , Wang, R. , Badea, A. , Liu, Y. , Xiao, D. , Zhou, G. , Lee, J. , Chung, H. U. , Cheng, H. , Ren, W. , Banks, A. , Li, X. , Paik, U. , Nuzzo, R. G. , Huang, Y. , Zhang, Y. , and Rogers, J. A. , 2015, “ Materials Science. Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling,” Science, 347(6218), pp. 154–159. [CrossRef] [PubMed]
Khang, D. Y. , Jiang, H. , Huang, Y. , and Rogers, J. A. , 2006, “ A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 311(5758), pp. 208–212. [CrossRef] [PubMed]
Cao, Q. , Kim, H. S. , Pimparkar, N. , Kulkarni, J. P. , Wang, C. , Shim, M. , Roy, K. , Alam, M. A. , and Rogers, J. A. , 2008, “ Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates,” Nature, 454(7203), pp. 495–500. [CrossRef] [PubMed]
Bowden, N. , Brittain, S. , Evans, A. G. , Hutchinson, J. W. , and Whitesides, G. M. , 1998, “ Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer,” Nature, 393(6681), pp. 146–149. [CrossRef]
Moon, M. W. , Lee, S. H. , Sun, J. Y. , Oh, K. H. , Vaziri, A. , and Hutchinson, J. W. , 2007, “ Wrinkled Hard Skins on Polymers Created by Focused Ion Beam,” Proc. Natl. Acad. Sci. U. S. A., 104(4), pp. 1130–1133. [CrossRef] [PubMed]
Vella, D. , Bico, J. , Boudaoud, A. , Roman, B. , and Reis, P. M. , 2009, “ The Macroscopic Delamination of Thin Films From Elastic Substrates,” Proc. Natl. Acad. Sci. U. S. A., 106(27), pp. 10901–10906. [CrossRef] [PubMed]
Ebata, Y. , Croll, A. B. , and Crosby, A. J. , 2012, “ Wrinkling and Strain Localizations in Polymer Thin Films,” Soft Matter, 8(35), p. 9086. [CrossRef]
Li, P. , You, Z. , Haugstad, G. , and Cui, T. , 2011, “ Graphene Fixed-End Beam Arrays Based on Mechanical Exfoliation,” Appl. Phys. Lett., 98(25), p. 253105. [CrossRef]
Shi, Z. , Lu, H. , Zhang, L. , Yang, R. , Wang, Y. , Liu, D. , Guo, H. , Shi, D. , Gao, H. , Wang, E. , and Zhang, G. , 2011, “ Studies of Graphene-Based Nanoelectromechanical Switches,” Nano Res., 5(2), pp. 82–87. [CrossRef]
Li, D. , Windl, W. , and Padture, N. P. , 2009, “ Toward Site-Specific Stamping of Graphene,” Adv. Mater., 21(12), pp. 1243–1246. [CrossRef]
Yoon, T. , Shin, W. C. , Kim, T. Y. , Mun, J. H. , Kim, T. S. , and Cho, B. J. , 2012, “ Direct Measurement of Adhesion Energy of Monolayer Graphene as-Grown on Copper and Its Application to Renewable Transfer Process,” Nano Lett., 12(3), pp. 1448–1452. [CrossRef] [PubMed]
Brennan, C. J. , Nguyen, J. , Yu, E. T. , and Lu, N. , 2015, “ Interface Adhesion Between 2D Materials and Elastomers Measured by Buckle Delaminations,” Adv. Mater. Interfaces, 2(16), p. 1500176. [CrossRef]
Bunch, J. S. , and Dunn, M. L. , 2012, “ Adhesion Mechanics of Graphene Membranes,” Solid State Commun., 152(15), pp. 1359–1364. [CrossRef]
Zong, Z. , Chen, C.-L. , Dokmeci, M. R. , and Wan, K.-T. , 2010, “ Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles,” J. Appl. Phys., 107(2), p. 026104. [CrossRef]
Koenig, S. P. , Boddeti, N. G. , Dunn, M. L. , and Bunch, J. S. , 2011, “ Ultrastrong Adhesion of Graphene Membranes,” Nat. Nanotechnol., 6(9), pp. 543–546. [CrossRef] [PubMed]
Cao, Z. , Wang, P. , Gao, W. , Tao, L. , Suk, J. W. , Ruoff, R. S. , Akinwande, D. , Huang, R. , and Liechti, K. M. , 2014, “ A Blister Test for Interfacial Adhesion of Large-Scale Transferred Graphene,” Carbon, 69, pp. 390–400. [CrossRef]
Jiang, T. , Huang, R. , and Zhu, Y. , 2014, “ Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate,” Adv. Funct. Mater., 24(3), pp. 396–402. [CrossRef]
Bertolazzi, S. , Brivio, J. , and Kis, A. , 2011, “ Stretching and Breaking of Ultrathin MoS2,” ACS Nano, 5(12), pp. 9703–9709. [CrossRef] [PubMed]
Castellanos-Gomez, A. , Poot, M. , Steele, G. A. , van der Zant, H. S. , Agrait, N. , and Rubio-Bollinger, G. , 2012, “ Elastic Properties of Freely Suspended MoS2 Nanosheets,” Adv. Mater., 24(6), pp. 772–775. [CrossRef] [PubMed]
Liu, K. , Yan, Q. , Chen, M. , Fan, W. , Sun, Y. , Suh, J. , Fu, D. , Lee, S. , Zhou, J. , Tongay, S. , Ji, J. , Neaton, J. B. , and Wu, J. , 2014, “ Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures,” Nano Lett., 14(9), pp. 5097–5103. [CrossRef] [PubMed]
Gao, W. , and Huang, R. , 2011, “ Effect of Surface Roughness on Adhesion of Graphene Membranes,” J. Phys. D: Appl. Phys., 44(45), p. 452001. [CrossRef]
Lee, C. , Li, Q. , Kalb, W. , Liu, X. Z. , Berger, H. , Carpick, R. W. , and Hone, J. , 2010, “ Frictional Characteristics of Atomically Thin Sheets,” Science, 328(5974), pp. 76–80. [CrossRef] [PubMed]
Chen, X. , and Hutchinson, J. W. , 2004, “ Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates,” ASME J. Appl. Mech., 71(5), p. 597. [CrossRef]
Huang, Z. Y. , Hong, W. , and Suo, Z. , 2005, “ Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate,” J. Mech. Phys. Solids, 53(9), pp. 2101–2118. [CrossRef]
Jiang, H. , Khang, D. Y. , Song, J. , Sun, Y. , Huang, Y. , and Rogers, J. A. , 2007, “ Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports,” Proc. Natl. Acad. Sci. U. S. A., 104(40), pp. 15607–15612. [CrossRef] [PubMed]
Hutchinson, J. W. , and Suo, Z. , 1991, “ Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech., 29, pp. 63–191.
Cotterell, B. , and Chen, Z. , 2000, “ Buckling and Cracking of Thin Films on Compliant Substrates Under Compression,” Int. J. Fract., 104(2), pp. 169–179. [CrossRef]
Yu, H.-H. , and Hutchinson, J. W. , 2002, “ Influence of Substrate Compliance on Buckling Delamination of Thin Films,” Int. J. Fract., 113(1), pp. 39–55. [CrossRef]
Scharfenberg, S. , Rocklin, D. Z. , Chialvo, C. , Weaver, R. L. , Goldbart, P. M. , and Mason, N. , 2011, “ Probing the Mechanical Properties of Graphene Using a Corrugated Elastic Substrate,” Appl. Phys. Lett., 98(9), p. 091908. [CrossRef]
Bevington, P. R. , and Robinson, D. K. , 2003, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, Inc., New York.
Cleymand, F. , Coupeau, C. , and Grilhé, J. , 2001, “ Experimental Investigation of the Instability of Buckling Patterns: From Straight-Sided to Wormlike Structures,” Scr. Mater., 44(11), pp. 2623–2627. [CrossRef]
Parry, G. , Coupeau, C. , Colin, J. , Cimetière, A. , and Grilhé, J. , 2004, “ Buckling and Post-Buckling of Stressed Straight-Sided Wrinkles: Experimental AFM Observations of Bubbles Formation and Finite Element Simulations,” Acta Mater., 52(13), pp. 3959–3966. [CrossRef]
Foucher, F. , 2007, “ Influence of The Substrate on The Blistering Phenomenon of Coated Materials,” Ph.D. thesis, Université de Poitiers, Poitiers, France.


Grahic Jump Location
Fig. 1

Schematic diagram of substrate compression induced wrinkles (a) and delamination (b). Definition of the wrinkle amplitude A and wavelength λw, and delamination height δ and width λd are indicated. Wrinkles and delamination are not drawn to scale.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In