Research Papers

Pertinence of the Grain Size on the Mechanical Strength of Polycrystalline Metals

[+] Author and Article Information
N. A. Zontsika

Laboratoire des Sciences des Procédés et
des Matériaux (LSPM–UPR CNRS 3407),
Université Paris 13,
99 Avenue Jean-Baptiste Clément,
Villetaneuse 93430, France

A. Abdul-Latif

Laboratoire Quartz,
Supméca, 3,
rue Fernand Hainaut,
St Ouen Cedex 93407, France;
IUT de Tremblay,
Université Paris 8,
Tremblay-en-France 93290, France
e-mail: aabdul@iu2t.univ-paris8.fr

S. Ramtani

Laboratoire des Sciences des Procédés et des
Matériaux (LSPM–UPR CNRS 3407),
Université Paris 13,
99 Avenue Jean-Baptiste Clément,
Villetaneuse 93430, France

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 10, 2016; final manuscript received September 9, 2016; published online February 9, 2017. Assoc. Editor: Taehyo Park.

J. Eng. Mater. Technol 139(2), 021017 (Feb 09, 2017) (10 pages) Paper No: MATS-16-1176; doi: 10.1115/1.4035489 History: Received June 10, 2016; Revised September 09, 2016

Motivated by the already developed micromechanical approach (Abdul-Latif et al., 2002, “Elasto-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69(3), pp. 309–316.), a new extension is proposed for describing the mechanical strength of ultrafine-grained (ufg) materials whose grain sizes, d, lie in the approximate range of 100 nm < d < 1000 nm as well as for the nanocrystalline (nc) materials characterized by d100nm. In fact, the dislocation kinematics approach is considered for characterizing these materials where grain boundary is taken into account by a thermal diffusion concept. The used model deals with a soft nonincremental inclusion/matrix interaction law. The overall kinematic hardening effect is described naturally by the interaction law. Within the framework of small deformations hypothesis, the elastic part, assumed to be uniform and isotropic, is evaluated at the granular level. The heterogeneous inelastic part of deformation is locally determined. In addition, the intragranular isotropic hardening is modeled based on the interaction between the activated slip systems within the same grain. Affected by the grain size, the mechanical behavior of the ufg as well as the nc materials is fairly well described. This development is validated through several uniaxial stress–strain experimental results of copper and nickel.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Gleiter, H. , 1982, “ On the Microstructure of Grain Boundaries in Metals,” Mater. Sci. Eng., 52(2), pp. 91–131. [CrossRef]
Kumar, K. S. , Van Swygenhon, H. , and Suresh, S. , 2003, “ Mechanical Behavior of Nanocrystalline Metals and Alloys,” Acta Mater., 51(19), pp. 5743–5774. [CrossRef]
Meyers, M. A. , Mishra, A. , and Benson, D. J. , 2006, “ Mechanical Properties of Nanocrystalline Materials,” Prog. Mater. Sci., 51(4), pp. 427–556. [CrossRef]
Cheng, S. , Spencer, J. A. , and Milligan, W. W. , 2003, “ Strength and Tension/Compression Asymmetry in Nanostructured and Ultrafine-Grain Metals,” Acta Mater., 51(15), pp. 4505–4518. [CrossRef]
Conrad, H. , 2003, “ Grain Size Dependence of Plastic Deformation Kinetics in Copper,” Mater. Sci. Eng., 341(1–2), pp. 216–228. [CrossRef]
Hall, E. O. , 1951, “ Macroscopic Aspect of Lüders Band Deformation in Mild Steel,” Proc. R. Soc. London B, 64(1), p. 474.
Petch, N. J. , 1954, “ Fracture of Metals,” Prog. Met. Phys., 5(1), pp. 1–52. [CrossRef]
Tjong, S. C. , and Chen, H. , 2004, “ Nanocrystalline Materials and Coatings,” Mater. Sci. Eng.: R, 45(1–2), pp. 1–88. [CrossRef]
Swygenhoven, H. , Derlet, P. M. , and Hasnaoui, A. , 2002, “ Atomic Mechanism for Dislocation Emission From Nano-Sized Grain Boundaries,” Phys. Rev. B, 66(2), p. 024101. [CrossRef]
Swygenhoven, H. , Spaczer, M. , Caro, A. , and Farkas, D. , 1999, “ Competing Plastic Deformation Mechanisms in Nanophase Metals,” Phys. Rev. B, 60(1), p. 22. [CrossRef]
Chokshi, A. H. , Rosen, A. , Karch, J. , and Gleiter, H. , 1989, “ On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials,” Scr. Metall., 23(10), pp. 1679–1683. [CrossRef]
Lu, K. , Wei, W. D. , and Wang, J. T. , 1990, “ Microhardness and Fracture Properties of Nanocrystalline Ni-P Alloy,” Scr. Metall. Mater., 24(12), pp. 2319–2323. [CrossRef]
Hahn, H. , and Padmanabhan, K. A. , 1997, “ A Model for the Deformation of Nanocrystalline Materials,” Philos. Mag. B, 76(4), pp. 559–571. [CrossRef]
Nieh, T. G. , and Wadsworth, J. , 1991, “ Hall-Petch Relation in Nanocrystalline Solids,” Scr. Metall. Mater., 25(4), pp. 955–958. [CrossRef]
Lian, J. , Baudelet, B. , and Nazarov, A. A. , 1993, “ Model for the Prediction of the Mechanical Behavior of Nanocrystalline Materials,” Mater. Sci. Eng.: A, 172(1–2), pp. 23–29. [CrossRef]
Wang, N. , Wang, Z. , Aust, K. T. , and Erb, U. , 1995, “ Effect of Grain Size on the Mechanical Properties on Nanocrystalline Materials,” Acta Metall. Mater., 43(2), pp. 519–528. [CrossRef]
Cao, W. Q. , Dirras, G. , Benyoucef, M. , and Bacroix, B. , 2007, “ Room Temperature Deformation Mechanisms in Ultrafine-Grained Materials Processed by Hot Isostatic Pressing,” Mater. Sci. Eng., 462(1–2), pp. 100–105. [CrossRef]
Wang, Y. M. , Hamza, A. V. , and Ma, E. , 2006, “ Temperature-Dependent Strain Rate Sensitivity and Activation Volume of Nanocrystalline Ni,” Acta Mater., 54(10), pp. 2715–2726. [CrossRef]
Champion, Y. , 2013, “ Computing Regimes of Rate Dependent Plastic Flow in Ultrafine Grained Metals,” Mater. Sci. Eng., 560, pp. 315–320. [CrossRef]
Acharya, A. , and Beaudoin, A. J. , 2000, “ Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains,” J. Mech. Phys. Solids, 48(10), pp. 2213–2230. [CrossRef]
Aoyagi, Y. , and Shizawa, K. , 2007, “ Multiscale Crystal Plasticity Modeling Based on Geometrically Necessary Crystal Defects and Simulation on Fine-Graining for Polycrystal,” Int. J. Plast., 23(6), pp. 1022–1040. [CrossRef]
Zhu, B. , Asaro, R. , and Krysl, P. , 2006, “ Effects of Grain Size Distribution on the Mechanical Response of Nanocrystalline Metals: Part II,” Acta Mater., 54(12), pp. 3307–3320. [CrossRef]
Weng, G. J. , 1983, “ A Micromechanical Theory of Grain-Size Dependence in Metal Plasticity,” J. Mech. Phys. Solids, 31(3), pp. 193–203. [CrossRef]
Jiang, B. , and Weng, G. J. , 2004, “ A Generalized Self Consistent Polycrystal Model for the Yield Strength of Nanocrystalline Materials,” J. Mech. Phys. Solids, 52(5), pp. 1125–1149. [CrossRef]
Abdul-Latif, A. , Dirras, G. F. , Ramtani, S. , and Hocini, A. , 2009, “ A New Concept for Producing Ultrafine Grained Metallic Structures Via an Intermediate Strain Rate: Experiments and Modeling,” Int. J. Mech. Sci., 51(11–12), pp. 797–806. [CrossRef]
Carsley, J. E. , Ning, J. , Milligan, W. M. , Hackney, S. A. , and Aifantis, E. C. , 1995, “ A Simple, Mixtures-Based Model for the Grain Size Dependence of Strength in Nanophase Metals,” Nanostruct. Mater., 5(4), pp. 441–448. [CrossRef]
Kim, H. S. , 1998, “ A Composite Model for Mechanical Properties of Nanocrystalline Materials,” Scr. Mater., 39(8), pp. 1057–1061. [CrossRef]
Kim, H. S. , and Bush, M. B. , 1999, “ The Effects of Grain Size and Porosity on the Elastic Modulus of Nanocrystalline Materials,” Nanostruct. Mater., 11(3), pp. 361–367. [CrossRef]
Kim, H. S. , Bush, M. B. , and Estrin, Y. , 2000, “ A Phase Mixture Model of a Particle Reinforced Composite With Fine Microstructure,” Mater. Sci. Eng.: A, 276(1–2), pp. 175–185. [CrossRef]
Kim, H. S. , Estrin, Y. , and Bush, M. B. , 2001, “ Constitutive Modelling of Strength and Plasticity of Nanocrystalline Metallic Materials,” Mater. Sci. Eng.: A, 316(1–2), pp. 195–199. [CrossRef]
Kim, H. S. , and Estrin, Y. , 2001, “ Ductility of Ultrafine Grained Copper,” Appl. Phys. Lett., 79(25), pp. 4115–4117. [CrossRef]
Schwaiger, R. , Moser, B. , Dao, M. , Chollacoop, N. , and Suresh, S. , 2003, “ Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel,” Acta Mater., 51(17), pp. 5159–5172. [CrossRef]
Kim, H. S. , and Estrin, Y. , 2005, “ Phase Mixture Modeling of the Strain Rate Dependent Mechanical Behavior of Nanostructured Materials,” Acta Mater., 53(3), pp. 765–772. [CrossRef]
Ramtani, S. , Bui, Q. H. , and Dirras, G. , 2009, “ A Revisited Generalized Self-consistent Polycrystal Model Following an Incremental Small Strain Formulation and Including Grain-Size Distribution Effect,” Int. J. Eng. Sci., 47(4), pp. 537–553. [CrossRef]
Ramtani, S. , Dirras, G. , and Bui, Q. H. , 2010, “ A Bimodal Bulk Ultrafine-Grained Nickel: Experimental and Micromechanical Investigations,” Mech. Mater., 42(5), pp. 522–536. [CrossRef]
Voyiadjis, G. Z. , and Deliktas, B. , 2010, “ Modeling of Strengthening and Softening in Inelastic Nanocrystalline Materials With Reference to the Triple Junction and Grain Boundaries Using Strain Gradient Plasticity,” Acta Mech., 213(1), pp. 3–26. [CrossRef]
El-Awady, J. A. , Wen, M. , and Ghoniem, N. M. , 2009, “ The Role of the Weakest-Link Mechanism in Controlling the Plasticity of Micropillars,” J. Mech. Phys. Solids, 57(1), pp. 32–50. [CrossRef]
El-Awady, J. A. , Uchic, M. D. , Shade, P. A. , Kim, S.-L. , Rao, S. I. , Dimiduk, D. M. , and Woodward, C. , 2013, “ Pre-Straining Effects on the Power-Law Scaling of Size-Dependent Strengthening in Ni Single Crystals,” Scr. Mater., 68(3–4), pp. 207–210. [CrossRef]
El-Awady, J. A. , 2014, “ Unravelling the Physics of Size-Dependent Dislocation-Mediated Plasticity,” Nat. Commun., 6, p. 5926. [CrossRef]
Sansoz, F. , 2011, “ Atomistic Processes Controlling Flow Stress Scaling During Compression of Nanoscale Face-Centered-Cubic Crystals,” Acta Mater., 59(9), pp. 3364–3372. [CrossRef]
Voyiadjis, G. Z. , and Yaghoobi, M. , 2015, “ Large Scale Atomistic Simulation of Size Effects During Nanoindentation: Dislocation Length and Hardness,” Mater. Sci. Eng.: A, 634, pp. 20–31. [CrossRef]
Voyiadjis, G. Z. , and Yaghoobi, M. , 2016, “ Role of Grain Boundary on the Sources of Size Effects,” Comput. Mater. Sci., 117, pp. 315–329. [CrossRef]
Yaghoobi, M. , and Voyiadjis, G. Z. , 2016, “ Atomistic Simulation of Size Effects in Single-Crystalline Metals of Confined Volumes During Nanoindentation,” Comput. Mater. Sci., 111, pp. 64–73. [CrossRef]
Malygin, G. A. , 2007, “ Plasticity and Strength of Micro- and Nanocrystalline Materials,” Phys. Solid State, 49(6), pp. 1013–1033. [CrossRef]
Malygin, G. A. , 2007, “ Analysis of the Strain-Rate Sensitivity of Flow Stresses in Nanocrystalline FCC and BCC Metals,” Phys. Solid State, 49(12), pp. 2266–2273. [CrossRef]
Malygin, G. A. , 2008, “ Effect of Grain Size Dispersion on the Strength and Plasticity of Nanocrystalline Metals,” Phys. Solid State, 50(6), pp. 1056–1060. [CrossRef]
Abdul-Latif, A. , Dingli, J. P. , and Saanouni, K. , 2002, “ Elasto-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69(3), pp. 309–316. [CrossRef]
Abdul-Latif, A. , 2004, “ Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response,” Int. J. Solids Struct., 41(2), pp. 305–322. [CrossRef]
Saanouni, K. , and Abdul-Latif, A. , 1996, “ Micromechanical Modeling of Low Cyclic Fatigue Under Complex Loadings-Part I,” Int. J. Plast., 12(9), pp. 1111–1121. [CrossRef]
Cailletaud, G. , 1992, “ A Micromechanical Approach to Inelastic Behavior of Metals,” Int. J. Plast., 8(1), pp. 55–73. [CrossRef]
Molinari, A. , Ahzi, S. , and Kouddane, R. , 1997, “ On the Self-Consistent Modeling of Elasto-Plastic Behavior of Polycrystals,” Mech. Mater., 26(1), pp. 43–62. [CrossRef]
Kouddane, R. , Molinari, A. , and Canova, G. R. , 1993, “ Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-Viscoplastic Materials,” Large Plastic Deformation: Fundamentals and Applications to Metal Forming, C. Teodosiu , J. L. Raphanel , and F. Sidoroff , eds., Balkema, Mecamat 91, p. 121.
François, D. , Pineau, A. , and Zaoui, A. , 1993, Comportement Mécanique des Matériaux, Hermes, Paris, France.
Molinari, A. , Canova, G. R. , and Ahzi, S. , 1987, “ A Self-Consistent Approach of the Large Deformation Viscoplasticity,” Acta Metall., 35(12), pp. 2983–2994. [CrossRef]
Galindo-Nava, E. I. , and Rivera-Díaz-del-Castillo, P. E. J. , 2012, “ A Thermostatistical Theory of Low and High Temperature Deformation in Metal,” Mater. Sci. Eng.: A, 543, pp. 110–116. [CrossRef]
Li, J. , and Soh, A. K. , 2012, “ Modeling of the Plastic Deformation of Nanostructured Materials With Grain Size Gradient,” Int. J. Plast., 39, pp. 88–102. [CrossRef]
Lavrentev, F. , 1980, “ The Type of Dislocation Interaction as the Factor Determining Work Hardening,” Mater. Sci. Eng., 46(2), pp. 191–208. [CrossRef]
Mandel, J. , 1965, “ Une Généralisation de la Théorie de la Plasticité de W. T. Koiter,” Int. J. Solids Struct., 1(3), pp. 273–295. [CrossRef]
Hill, R. , 1966, “ Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip,” J. Mech. Phys. Solids, 14(2), pp. 95–102. [CrossRef]
Mandel, J. , 1971, Plasticité Classique et Viscoplasticité, Cours CISM, Udine, No. 97, Springer Verlag, Berlin.
Sanders, P. G. , Eastman, J. A. , and Weertman, J. R. , 1997, “ Elastic and Tensile Behavior of Nano-Crystalline Copper and Palladium,” Acta Mater., 45(10), pp. 4019–4025. [CrossRef]
Masumura, R. A. , Hazzledine, P. M. , and Pande, C. S. , 1998, “ Yield Stress of Fine Grained Materials,” Acta Mater., 46(13), pp. 4527–4534. [CrossRef]
Wolf, D. , Yamakov, V. , Phillpot, S. R. , Mukherjee, A. , and Gleiter, H. , 2005, “ Deformation of Nanocrystalline Materials by Molecular-Dynamics Simulation: Relationship to Experiments?,” Acta Mater., 53(1), pp. 1–40. [CrossRef]


Grahic Jump Location
Fig. 1

Inverse-pole figure for the used 400 grains aggregate showing the initial grains distribution

Grahic Jump Location
Fig. 3

Influence of the diffusion coefficient (Dgb) on the copper flow stress for 500 μm≥d≥3 nm

Grahic Jump Location
Fig. 4

Influence of the model parameter (α) on the copper flow stress for 500 μm≥d≥3 nm

Grahic Jump Location
Fig. 5

Comparison between the overall predicted response and the experiment result for the copper showing the grain size impact on the tensile stress–strain behavior

Grahic Jump Location
Fig. 6

Comparison between the experimental results and the model predictions of the compressive stress–strain for nickel

Grahic Jump Location
Fig. 7

Axial granular responses at the end of loading: (a) elastic, (b) inelastic, and (c) stress showing the impact of the grain size on their evolutions

Grahic Jump Location
Fig. 8

Predicted evolution of the: (a) slip, (b) intragranular isotropic hardening, and (c) resolved shear stress, for a given activated slip system using the three different grain sizes

Grahic Jump Location
Fig. 9

Dependence of the yield stress on the copper grain size

Grahic Jump Location
Fig. 2

Programming flowchart of the model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In