Research Papers

Evaluation of Formability Under Different Deformation Modes for TWIP900 Steel

[+] Author and Article Information
Suleyman Kilic

Department of Mechanical Engineering,
Ahi Evran University,
Kirsehir 40200, Turkey
e-mail: suleymankilic@ahievran.edu.tr

Fahrettin Ozturk

Department of Mechanical Engineering,
The Petroleum Institute,
P. O. Box 2533,
Abu Dhabi, UAE
e-mail: fahrettin71@gmail.com

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 9, 2016; final manuscript received December 5, 2016; published online March 23, 2017. Assoc. Editor: Marwan K. Khraisheh.

J. Eng. Mater. Technol 139(3), 031001 (Mar 23, 2017) (8 pages) Paper No: MATS-16-1008; doi: 10.1115/1.4035621 History: Received January 09, 2016; Revised December 05, 2016

Automotive manufacturers always seek high strength and high formability materials for automotive bodies. Advanced high strength steels (AHSS) are excellent candidates for this purpose. These steels generally show a reasonable degree of formability, in addition to their high strength. One particular type is the twinning-induced plasticity (TWIP) steel, which is a high manganese austenite steel, and represents a second generation in AHSS. In this study, comprehensive deformation analysis of TWIP900CR steel including tensile, bending, Erichsen, and deep drawing of cylindrical cups tests is made. Finite element simulation of U and V shaped bending processes is also performed. Results indicate that the TWIP steel has good mechanical properties and high formability. However, springback is quite significant. The coining force should be considered in order to reduce the amount of springback. For springback prediction, it is found that the Yld2000-2d material model has better prediction capability than the Hill48 model.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Schumann, V. H. , 1972, “ Martensitische Umwandlung in Austenitischen Mangan-Kohlenstoff-Stählen,” Neue Hütte, 17(10), pp. 605–609.
Chung, K. , Ahn, K. , Yoo, D. H. , Chung, K. H. , Seo, M. H. , and Park, S. H. , 2011, “ Formability of TWIP (Twinning Induced Plasticity) Automotive Sheets,” Int. J. Plast., 27(1), pp. 52–81. [CrossRef]
Dai, Y. J. , Tang, D. , Mi, Z. L. , and Lü, J. C. , 2010, “ Microstructure Characteristics of an Fe-Mn-C TWIP Steel After Deformation,” J. Iron Steel Res. Int., 17(9), pp. 53–59. [CrossRef]
Renard, K. , and Jacques, P. J. , 2012, “ On the Relationship Between Work Hardening and Twinning Rate in TWIP Steels,” Mater. Sci. Eng. A, 542(12), pp. 8–14. [CrossRef]
Soulami, A. , Choi, K. S. , Shen, Y. F. , Liu, W. N. , Sun, X. , and Khaleel, M. A. , 2011, “ On Deformation Twinning in a 17.5% Mn–TWIP Steel: A Physically Based Phenomenological Model,” Mater. Sci. Eng. A, 528(3), pp. 1402–1408. [CrossRef]
Wang, S. H. , Liu, Z. Y. , Wang, G. D. , Liu, J. L. , Liang, G. F. , and Li, Q. L. , 2010, “ Effects of Twin-Dislocation and Twin-Twin Interactions on the Strain Hardening Behavior of TWIP Steels,” J. Iron Steel Res. Int., 17(12), pp. 70–74. [CrossRef]
Xu, L. , Barlat, F. , and Lee, M. G. , 2012, “ Hole Expansion of Twinning-Induced Plasticity Steel,” Scr. Mater., 66(12), pp. 1012–1017. [CrossRef]
Kılıç, S. , and Öztürk, F. , 2016, “ Comparison of Performances of Commercial TWIP900 and DP600 Advanced High Strength Steels in Automotive Industry,” J. Fac. Eng. Archit. Gazi Univ., 31(3), pp. 567–578.
Billur, E. , Dykeman, J. , and Altan, T. , 2014, “ Three Generations of Advanced High-Strength Steels for Automotive Applications—Part II,” Stamping J., 664(2), pp. 12–13.
Chung, K. , Ma, N. , Park, T. , Kim, D. , Yoo, D. , and Kim, C. , 2011, “ A Modified Damage Model for Advanced High Strength Steel Sheets,” Int. J. Plast., 27(10), pp. 1485–1511. [CrossRef]
Chen, L. , Kim, H. S. , Kim, S. K. , and De Cooman, B. C. , 2007, “ Localized Deformation Due to Portevin-Le Chatelier Effect in 18Mn-0.6C TWIP Austenitic Steel,” ISIJ Int., 47(12), pp. 1804–1812. [CrossRef]
Li, D. , Feng, Y. , Yin, Z. , Shangguan, F. , Wang, K. , Liu, Q. , and Hu, F. , 2011, “ Prediction of Hot Deformation Behaviour of Fe–25Mn–3Si–3Al TWIP Steel,” Mater. Sci. Eng. A, 528(28), pp. 8084–8089. [CrossRef]
Vercammen, S. , Blanpain, B. , De Cooman, B. C. , and Wollants, P. , 2004, “ Cold Rolling Behaviour of an Austenitic Fe–30Mn–3Al–3Si TWIP-Steel: The Importance of Deformation Twinning,” Acta Mater., 52(7), pp. 2005–2012. [CrossRef]
Xu, S. , Ruan, D. , Beynon, J. H. , and Rong, Y. H. , 2013, “ Dynamic Tensile Behaviour of TWIP Steel Under Intermediate Strain Rate Loading,” Mater. Sci. Eng. A, 573(15), pp. 132–140. [CrossRef]
Curtze, S. , and Kuokkala, V. T. , 2010, “ Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate,” Acta Mater., 58(15), pp. 5129–5141. [CrossRef]
Ahn, K. , Yoo, D. , Seo, M. , Park, S. H. , and Chung, K. , 2009, “ Springback Prediction of TWIP Automotive Sheets,” Met. Mater. Int., 15(4), pp. 637–647. [CrossRef]
Grässel, O. , Krüger, L. , Frommeyer, G. , and Meyer, L. , 2000, “ High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development—Properties—Application,” Int. J. Plast., 16(10), pp. 1391–1409. [CrossRef]
Bintu, A. , Vincze, G. , Picu, C. R. , Lopes, A. B. , Grácio, J. J. , and Barlat, F. , 2015, “ Strain Hardening Rate Sensitivity and Strain Rate Sensitivity in TWIP Steels,” Mater. Sci. Eng. A, 629(10), pp. 54–59. [CrossRef]
Bouaziz, O. , Allain, S. , and Estrin, Y. , 2010, “ Effect of Pre-Strain at Elevated Temperature on Strain Hardening of Twinning-Induced Plasticity Steels,” Scr. Mater., 62(9), pp. 713–715. [CrossRef]
Curtze, S. , and Kuokkala, V.-T. , 2010, “ Effects of Temperature and Strain Rate on the Tensile Properties of TWIP Steels,” Matéria, 15(2), pp. 157–163.
Kim, J.-K. , Chen, L. , Kim, H.-S. , Kim, S.-K. , Estrin, Y. , and De Cooman, B. C. , 2009, “ On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel,” Metall. Mater. Trans. A, 40(13), pp. 3147–3158. [CrossRef]
Khosravifard, A. , 2014, “ Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels,” Iran. J. Mater. Form., 1(1), pp. 1–10.
Ho, K. , and Krempl, E. , 2000, “ Modeling of Positive, Negative and Zero Rate Sensitivity by Using the Viscoplasticity Theory Based on Overstress (VBO),” Mech. Time Depend. Mater., 4(1), pp. 21–42. [CrossRef]
Ahn, K. , Yoo, D. , Chung, K. H. , Seo, M. H. , Park, S. H. , and Chung, K. , 2008, “ Formability and Springback of TWIP Automotive Sheets,” Numisheet, pp. 467–472.
Aspenberg, D. , Larsson, R. , and Nilsson, L. , 2012, “ An Evaluation of the Statistics of Steel Material Model Parameters,” J. Mater. Process. Technol., 212(6), pp. 1288–1297. [CrossRef]
Zhu, Y. X. , Liu, Y. L. , Yang, H. , and Li, H. P. , 2012, “ Development and Application of the Material Constitutive Model in Springback Prediction of Cold-Bending,” Mater. Des., 42(10), pp. 245–258. [CrossRef]
Toros, S. , Polat, A. , and Ozturk, F. , 2012, “ Formability and Springback Characterization of TRIP800 Advanced High Strength Steel,” Mater. Des., 41(9), pp. 298–305. [CrossRef]
Kilic, S. , Ozturk, F. , Sigirtmac, T. , and Tekin, G. , 2015, “ Effects of Pre-Strain and Temperature on Bake Hardening of TWIP900CR Steel,” J. Iron. Steel Res. Int., 22(4), pp. 361–365. [CrossRef]
ET Associates, 2007, “ eta/DYNAFORM Application Manual,” Engineering Technology Associates, Inc., Troy, MI.
Banabic, D. , 2010, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation, Springer, Berlin.
Akrout, M. , Amar, M. B. , Chaker, C. , and Dammak, F. , 2008, “ Numerical and Experimental Study of the Erichsen Test for Metal Stamping,” Adv. Prod. Eng. Manage., 3(2), pp. 81–92.
Sebastijan, J. , and Silvia, G. , 2011, “ Deep Drawing Simulation of á-Titanium Alloys Using LS-DYNA,” 8th European LS-DYNA Users Conference, Strasbourg, France, May 23–24, Paper No. 5.
Bílik, J. , Košťálová, M. , and Balážová, M. , 2010, “ Studies Properties and Formability of High-Strength Steel CP-W 800,” Ann. Fac. Eng. Hunedoara, 2(1), pp. 13–16.
Reisgen, U. , Schleser, M. , Mokrov, O. , and Ahmed, E. , 2010, “ Uni-and Bi-Axial Deformation Behavior of Laser Welded Advanced High Strength Steel Sheets,” J. Mater. Process. Technol., 210(15), pp. 2188–2196. [CrossRef]
Huang, Y. , Zhao, A. M. , Mi, Z. L. , Jing, H. T. , Li, W. Y. , and Hui, Y. J. , 2013, “ Formability of Fe-Mn-C Twinning Induced Plasticity Steel,” J. Iron Steel Res. Int., 20(11), pp. 111–117. [CrossRef]
Nemat-Nasser, S. and Isaacs, J. B. , 1997, “ Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates With Application to Ta and TaW Alloys,” Acta Mater., 45(3), pp. 907–919. [CrossRef]
Dixon, P. R. and Parry, D. J. , 1991, “ Thermal Softening Effects in Type 224 Carbon Steel,” J. Phys. IV, 1(C3), pp. 85–92.
Jin, J. E. , and Lee, Y. K. , 2012, “ Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel,” Acta Mater., 60(4), pp. 1680–1688. [CrossRef]


Grahic Jump Location
Fig. 1

The tensile test specimen dimensions (ASTM E8 Standard) (dimensions are in millimeter)

Grahic Jump Location
Fig. 2

(a) U-shaped bending and (b) 60 deg V-shaped bending

Grahic Jump Location
Fig. 3

Schematic representation of Erichsen test (a) and deep drawing cylindrical cup test(b)

Grahic Jump Location
Fig. 4

True stress versus true strain curves at 0.0083 s−1 for different inclination angles from rolling direction

Grahic Jump Location
Fig. 5

True stress versus true strain curves at 0.041 s−1 for different inclination angles from rolling direction

Grahic Jump Location
Fig. 6

True stress versus true strain curves at 0.16 s−1 for different inclination angles from rolling direction

Grahic Jump Location
Fig. 7

The effect of strain rate on the yield strength

Grahic Jump Location
Fig. 8

The effect of strain rate on the tensile strength

Grahic Jump Location
Fig. 9

The effect of strain rate on the uniform elongation

Grahic Jump Location
Fig. 10

The effect of strain rate on the total elongation

Grahic Jump Location
Fig. 11

Jump test of TWIP900CR steel

Grahic Jump Location
Fig. 12

Determinations of instantaneous and transient strain rate sensitivities

Grahic Jump Location
Fig. 13

Variations of instantaneous and total rate sensitivities with strain

Grahic Jump Location
Fig. 14

Finite element modeling of (a) V-shaped die bending and (b) U-shaped die bending

Grahic Jump Location
Fig. 18

Adiabatic temperature increase versus strain rate

Grahic Jump Location
Fig. 17

Deep drawing of a cylindrical cup at different conditions

Grahic Jump Location
Fig. 16

Erichsen test results

Grahic Jump Location
Fig. 15

Comparison of springback values



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In