0
research-article

Preliminary Design, Modeling, Production and First Evaluation Tests of a Ti-Al Gas Turbine Blade

[+] Author and Article Information
Andrea Brotzu

Department of Chemical Engineering of materials and Environment, University of Roma “Sapienza”, Roma Italy. Via Eudossiana 18 - 00184 Roma
andrea.brotzu@uniroma1.it

Roberto Capata

Department of Mechanical and Aerospace Engineering, University of Roma “Sapienza”, Roma Italy, Via Eudossiana 18 - 00184 Roma
roberto.capata@uniroma1.it

Ferdinando Felli

Department of Chemical Engineering of materials and Environment, University of Roma “Sapienza”, Roma Italy. Via Eudossiana 18 - 00184 Roma
ferdinando.felli@uniroma1.it

Daniela Pilone

Department of Chemical Engineering of materials and Environment, University of Roma “Sapienza”, Roma Italy. Via Eudossiana 18 - 00184 Roma
daniela.pilone@uniroma1.it

Enrico Sciubba

Department of Chemical Engineering of materials and Environment, University of Roma “Sapienza”, Roma Italy. Via Eudossiana 18 - 00184 Roma
enrico.sciubba@uniroma1.it

1Corresponding author.

ASME doi:10.1115/1.4035894 History: Received June 06, 2016; Revised January 11, 2017

Abstract

The aim of the work described in this paper was to design a lightweight, creep resistant blade for an axial single-stage micro gas turbine. The selected process was the casting of an intermetallic Titanium/Aluminum alloy. All project phases are described, from the preliminary thermodynamic and geometric stage design, to its three-dimensional (3D) modeling and the subsequent finite element method-computational fluid dynamics (FEM-CFD) analysis, to the manufacturing process of the single rotor blade. The blade making (height 7 cm, chord 5 cm, approximately) consisted in a prototyping phase in which a fully 3D version was realized by means of fused deposition modeling, and then in the actual production of a full-scale set of blades by investment casting in an induction furnace. The produced items showed acceptable characteristics in terms of shape and soundness. Metallographic investigations and preliminary mechanical tests were performed on the blade specimens. The geometry was then refined by a CFD study, and a slightly modified shape was obtained whose final testing under operative conditions is though left for a later study. The paper describes the spec-to-final product procedure and discusses some critical aspects of this manufacturing process such as the considerable reactivity between the molten metal and the mold material, the resistance of the ceramic shell to the molten metal impact at high temperatures and the maximal acceptable mold porosity for the specified surface finish. The CFD results that led to the modification of the original commercial shape are also discussed, and a preliminary performance assessment of the turbine stage is presented and discussed.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In