0
Research Papers

Monte Carlo Model for Piezoresistivity of Hybrid Nanocomposites

[+] Author and Article Information
Audrey Gbaguidi, Daewon Kim

Aerospace Engineering Department,
Embry-Riddle Aeronautical University,
Daytona Beach, FL 32114

Sirish Namilae

Aerospace Engineering Department,
Embry-Riddle Aeronautical University,
Daytona Beach, FL 32114
e-mail: namilaes@erau.edu

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received February 9, 2017; final manuscript received May 19, 2017; published online August 9, 2017. Assoc. Editor: Peter W. Chung.

J. Eng. Mater. Technol 140(1), 011007 (Aug 09, 2017) (11 pages) Paper No: MATS-17-1040; doi: 10.1115/1.4037024 History: Received February 09, 2017; Revised May 19, 2017

Hybrid nanocomposites with multiple fillers like carbon nanotubes (CNT) and graphene nanoplatelets (GNP) are known to exhibit improved electrical and electromechanical performance when compared to monofiller composites. We developed a two-dimensional Monte Carlo percolation network model for hybrid nanocomposite with CNT and GNP fillers and utilized it to study the electrical conductivity and piezoresistivity as a function of nanocomposite microstructural variations. The filler intersections are modeled considering electron tunneling as the mechanism for electrical percolation. Network modification after elastic deformation is utilized to model the nanocomposite piezoresistive behavior. Systematic improvement in electrical conductivity and piezoresistivity was observed in the hybrid nanocomposites, compared to monofiller CNT nanocomposites. Parametric studies have been performed to show the effect of GNP content, size, aspect ratio, and alignment on the percolation threshold, the conductivity, and piezoresistivity of hybrid CNT–GNP polymer composites.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bauhofer, W. , and Kovacs, J. Z. , 2009, “ A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites,” Compos. Sci. Technol., 69(10), pp. 1486–1498. [CrossRef]
Stankovich, S. , Dikin, D. A. , Dommett, G. H. , Kohlhaas, K. M. , Zimney, E. J. , Stach, E. A. , Piner, R. D. , Nguyen, S. T. , and Ruoff, R. S. , 2006, “ Graphene-Based Composite Materials,” Nature, 442(7100), pp. 282–286. [CrossRef] [PubMed]
Li, C. , Thostenson, E. T. , and Chou, T. W. , 2008, “ Sensors and Actuators Based on Carbon Nanotubes and Their Composites: A Review,” Compos. Sci. Technol., 68(6), pp. 1227–1249. [CrossRef]
Zhang, W. , Suhr, J. , and Koratkar, N. , 2006, “ Carbon Nanotube/Polycarbonate Composites as Multifunctional Strain Sensors,” J. Nanosci. Nanotechnol., 6(4), pp. 960–964. [CrossRef] [PubMed]
Yin, G. , Hu, N. , Karube, Y. , Liu, Y. , Li, Y. , and Fukunaga, H. , 2011, “ A Carbon Nanotube/Polymer Strain Sensor With Linear and Anti-Symmetric Piezoresistivity,” J. Compos. Mater., 45(12), pp. 1315–1323.
Behnam, A. , and Ural, A. , 2007, “ Computational Study of Geometry-Dependent Resistivity Scaling in Single-Walled Carbon Nanotube Films,” Phys. Rev. B, 75(12), p. 125432. [CrossRef]
Rahman, R. , and Servati, P. , 2012, “ Effects of Inter-Tube Distance and Alignment on Tunnelling Resistance and Strain Sensitivity of Nanotube/Polymer Composite Films,” Nanotechnology, 23(5), p. 055703. [CrossRef] [PubMed]
Wang, Z. , and Ye, X. , 2013, “ A Numerical Investigation on Piezoresistive Behaviour of Carbon Nanotube/Polymer Composites: Mechanism and Optimizing Principle,” Nanotechnology, 24(26), p. 265704. [CrossRef] [PubMed]
Bao, W. S. , Meguid, S. A. , Zhu, Z. H. , Pan, Y. , and Weng, G. J. , 2012, “ A Novel Approach to Predict the Electrical Conductivity of Multifunctional Nanocomposites,” Mech. Mater., 46, pp. 129–138. [CrossRef]
Bao, W. S. , Meguid, S. A. , Zhu, Z. H. , and Weng, G. J. , 2012, “ Tunneling Resistance and Its Effect on the Electrical Conductivity of Carbon Nanotube Nanocomposites,” J. Appl. Phys., 111(9), p. 093726. [CrossRef]
Gong, S. , and Zhu, Z. H. , 2014, “ On the Mechanism of Piezoresistivity of Carbon Nanotube Polymer Composites,” Polymer, 55(16), pp. 4136–4149. [CrossRef]
Gong, S. , Zhu, Z. H. , and Meguid, S. A. , 2015, “ Anisotropic Electrical Conductivity of Polymer Composites With Aligned Carbon Nanotubes,” Polymer, 56, pp. 498–506. [CrossRef]
Kuilla, T. , Bhadra, S. , Yao, D. , Kim, N. H. , Bose, S. , and Lee, J. H. , 2010, “ Recent Advances in Graphene Based Polymer Composites,” Prog. Polym. Sci., 35(11), pp. 1350–1375. [CrossRef]
Tang, L. C. , Wan, Y. J. , Yan, D. , Pei, Y. B. , Zhao, L. , Li, Y. B. , Wu, L. B. , Jiang, J. X. , and Lai, G. Q. , 2013, “ The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites,” Carbon, 60, pp. 16–27. [CrossRef]
Pathangi, H. , Vereecken, P. M. , Klekachev, A. , Groeseneken, G. , and Witvrouw, A. , 2014, “ Quantifying the Aggregation Factor in Carbon Nanotube Dispersions by Absorption Spectroscopy,” J. Nanosci., 2014, p. 328627.
Inam, F. , and Peijs, T. , 2006, “ Re-Agglomeration of Carbon Nanotubes in Two-Part Epoxy System—Influence of the Concentration,” J. Nanostruct. Polym. Nanocompos., 2(3), pp. 87–95. http://nrl.northumbria.ac.uk/12712/1/IBCAST_Proc.,_May_2007.pdf
Xia, W. , and Thorpe, M. F. , 1988, “ Percolation Properties of Random Ellipses,” Phys. Rev. A, 38(5), pp. 2650–2656. [CrossRef]
Oskouyi, A. B. , Sundararaj, U. , and Mertiny, P. , 2014, “ Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets,” Materials, 7(4), pp. 2501–2521. [CrossRef] [PubMed]
Oskouyi, A. B. , Sundararaj, U. , and Mertiny, P. , 2014, “ Current-Voltage Characteristics of Nanoplatelet-Based Conductive Nanocomposites,” Nanoscale Res. Lett., 9(1), p. 369. [CrossRef] [PubMed]
Yi, Y. B. , and Tawerghi, E. , 2009, “ Geometric Percolation Thresholds of Interpenetrating Plates in Three-Dimensional Space,” Phys. Rev. E, 79(4), p. 041134. [CrossRef]
Hadden, C. M. , Klimek-McDonald, D. R. , Pineda, E. J. , King, J. A. , Reichanadter, A. M. , Miskioglu, I. , Gowtham, S. , and Odegard, G. M. , 2015, “ Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments,” Carbon, 95, pp. 100–112. [CrossRef]
Maiti, S. , Shrivastava, N. K. , Suin, S. , and Khatua, B. B. , 2013, “ Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material Through Graphite Nanoplate–MWCNT–Graphite Nanoplate Networking,” ACS Appl. Mater. Interfaces, 5(11), pp. 4712–4724. [CrossRef] [PubMed]
Chatterjee, S. , Nafezarefi, F. , Tai, N. H. , Schlagenhauf, L. , Nüesch, F. A. , and Chu, B. T. T. , 2012, “ Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites,” Carbon, 50(15), pp. 5380–5386. [CrossRef]
Yue, L. , Pircheraghi, G. , Monemian, S. A. , and Manas-Zloczower, I. , 2014, “ Epoxy Composites With Carbon Nanotubes and Graphene Nanoplatelets–Dispersion and Synergy Effects,” Carbon, 78, pp. 268–278. [CrossRef]
Yu, A. , Ramesh, P. , Sun, X. , Bekyarova, E. , Itkis, M. E. , and Haddon, R. C. , 2008, “ Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet–Carbon Nanotube Filler for Epoxy Composites,” Adv. Mater., 20(24), pp. 4740–4744. [CrossRef]
Li, W. , Dichiara, A. , and Bai, J. , 2013, “ Carbon Nanotube–Graphene Nanoplatelet Hybrids as High-Performance Multifunctional Reinforcements in Epoxy Composites,” Compos. Sci. Technol., 74, pp. 221–227. [CrossRef]
Safdari, M. , and Al-Haik, M. S. , 2013, “ Synergistic Electrical and Thermal Transport Properties of Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets,” Carbon, 64, pp. 111–121. [CrossRef]
Safdari, M. , and Al-Haik, M. , 2012, “ Electrical Conductivity of Synergistically Hybridized Nanocomposites Based on Graphite Nanoplatelets and Carbon Nanotubes,” Nanotechnology, 23(40), p. 405202. [CrossRef] [PubMed]
Chen, Y. , Wang, S. , Pan, F. , and Zhang, J. , 2014, “ A Numerical Study on Electrical Percolation of Polymer-Matrix Composites With Hybrid Fillers of Carbon Nanotubes and Carbon Black,” J. Nanomater., 2014, p. 614797.
Wang, S. , Liang, Z. , Wang, B. , and Zhang, C. , 2006, “ Statistical Characterization of Single-Wall Carbon Nanotube Length Distribution,” Nanotechnology, 17(3), pp. 634–639. [CrossRef]
Lee, B. M. , and Loh, K. J. , 2015, “ A 2D Percolation-Based Model for Characterizing the Piezoresistivity of Carbon Nanotube-Based Films,” J. Mater. Sci., 50(7), pp. 2973–2983. [CrossRef]
Xu, W. , Chen, H. , and Lv, Z. , 2010, “ A 2D Elliptical Model of Random Packing for Aggregates in Concrete,” J. Wuhan Univ. Technol.: Mater. Sci. Ed., 25(4), pp. 717–720. [CrossRef]
Berhan, L. , and Sastry, A. M. , 2007, “ Modeling Percolation in High-Aspect-Ratio Fiber Systems. I. Soft-Core Versus Hard-Core Models,” Phys. Rev. E, 75(4), p. 041120. [CrossRef]
Simmons, J. G. , 1963, “ Electric Tunnel Effect Between Dissimilar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., 34(9), pp. 2581–2590. [CrossRef]
Pothen, A. , and Fan, C. J. , 1990, “ Computing the Block Triangular Form of a Sparse Matrix,” ACM Trans. Math. Software (TOMS), 16(4), pp. 303–324. [CrossRef]
Rommes, J. , and Schilders, W. H. , 2010, “ Efficient Methods for Large Resistor Networks,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 29(1), pp. 28–39. [CrossRef]
Hu, B. , Hu, N. , Li, Y. , Akagi, K. , Yuan, W. , Watanabe, T. , and Cai, Y. , 2012, “ Multi-Scale Numerical Simulations on Piezoresistivity of CNT/Polymer Nanocomposites,” Nanoscale Res. Lett., 7(1), p. 402. [CrossRef] [PubMed]
Graphene Supermarket, 2009, “ Graphene Supermarket Material Data Sheet,” Graphene Supermarket, Reading, MA, accessed June 21, 2017, https://graphene-supermarket.com/Conductive-Graphene-Sheets.html
Gong, S. , and Zhu, Z. H. , 2015, “ Giant Piezoresistivity in Aligned Carbon Nanotube Nanocomposite: Account for Nanotube Structural Distortion at Crossed Tunnel Junctions,” Nanoscale, 7(4), pp. 1339–1348. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Parameters to generate (a) ith CNT and (b) jth GNP particle in representative volume element

Grahic Jump Location
Fig. 2

Periodic compensation procedure

Grahic Jump Location
Fig. 3

Schematic of (a) a transformation of direct nanotube-to-nanotube contact, from junction point m to tunneling segment of length dmn, randomly generated, (b) tunneling effect when dmn≤D+dcutoff, (c) CNT resistor network conductive path, (d) graphene-to-graphene tunneling contact, and (e) graphene-to-nanotube tunneling contact, with tunneling segment of length dmn into resistor network conductive path (solid gray, dotted gray, and thin solid black lines represent intrinsic resistance, tunneling resistance, and fillers parts not involved in the conductive path, respectively)

Grahic Jump Location
Fig. 4

Convergence of average conductance value with Monte Carlo simulations

Grahic Jump Location
Fig. 5

Effect of addition of GNP (4, 2) with different GNP-to-CNT volume fraction ratios (GNP/CNT) on (a) percolation probability, (b) electrical conductance, and (c) the piezoresistivity (CNT volume fraction of 0.10) of the hybrid nanocomposite

Grahic Jump Location
Fig. 6

Effect of addition of three type of graphene of different sizes with a GNP-to-CNT volume fraction ratio (GNP/CNT) of 2 on (a) percolation probability, (b) electrical conductance, and (c) the piezoresistivity (CNT volume fraction of 0.10) of the hybrid nanocomposites

Grahic Jump Location
Fig. 7

Effect of addition of two types of graphene of different aspect ratio, with equal size on (a) percolation probability, (b) electrical conductance, and (c) the piezoresistivity (CNT volume fraction of 0.10) of the hybrid nanocomposites. The GNP-to-CNT volume fraction ratio (GNP/CNT) is 2.

Grahic Jump Location
Fig. 8

Effect of addition of two types of graphene of different aspect ratio, with different sizes on (a) percolation probability, (b) electrical conductance, and (c) the piezoresistivity (CNT volume fraction of 0.10) of the hybrid nanocomposites. The GNP-to-CNT volume fraction ratio (GNP/CNT) is 2.

Grahic Jump Location
Fig. 9

Effect of alignment of GNP (4, 0.5) with GNP-to-CNT volume fraction ratio (GNP/CNT) of 2 on the piezoresistivity of the hybrid nanocomposites with CNT volume fraction of 0.10

Grahic Jump Location
Fig. 10

Effect of different GNP microstructures with GNP-to-CNT volume fraction ratio (GNP/CNT) of 2 on the piezoresistivity of the hybrid nanocomposites with a CNT volume fraction of 0.10

Grahic Jump Location
Fig. 11

Effect of different GNP microstructures with GNP-to-CNT volume fraction ratio (GNP/CNT) of 2 on (a) percolation probability and (b) electrical conductance of the hybrid nanocomposites

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In