0
Research Papers

On the Utility of Crystal Plasticity Modeling to Uncover the Individual Roles of Microdeformation Mechanisms on the Work Hardening Response of Fe-23Mn-0.5C TWIP Steel in the Presence of Hydrogen

[+] Author and Article Information
B. Bal

Department of Mechanical Engineering,
Kyushu University,
Nishi-ku 819-0395, Fukuoka, Japan;
Department of Mechanical Engineering,
Abdullah Gül University,
Kayseri 38080, Turkey
e-mail: burak.bal@agu.edu.tr

M. Koyama, K. Tsuzaki

Department of Mechanical Engineering,
Kyushu University,
Nishi-ku 819-0395, Fukuoka, Japan

D. Canadinc

Department of Mechanical Engineering,
Advanced Materials Group (AMG);
Surface Science and
Technology Center (KUYTAM),
Koç University,
Sariyer,
Istanbul 34450, Turkey

G. Gerstein, H. J. Maier

Institut für Werkstoffkunde (Materials Science),
Leibniz Universität Hannover,
An der Universität 2,
Garbsen 30823, Germany

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 1, 2017; final manuscript received December 11, 2017; published online February 8, 2018. Assoc. Editor: Said Ahzi.

J. Eng. Mater. Technol 140(3), 031002 (Feb 08, 2018) (13 pages) Paper No: MATS-17-1160; doi: 10.1115/1.4038801 History: Received June 01, 2017; Revised December 11, 2017

This paper presents a combined experimental and theoretical analysis focusing on the individual roles of microdeformation mechanisms that are simultaneously active during the deformation of twinning-induced plasticity (TWIP) steels in the presence of hydrogen. Deformation responses of hydrogen-free and hydrogen-charged TWIP steels were examined with the aid of thorough electron microscopy. Specifically, hydrogen charging promoted twinning over slip–twin interactions and reduced ductility. Based on the experimental findings, a mechanism-based microscale fracture model was proposed, and incorporated into a visco-plastic self-consistent (VPSC) model to account for the stress–strain response in the presence of hydrogen. In addition, slip-twin and slip–grain boundary interactions in TWIP steels were also incorporated into VPSC, in order to capture the deformation response of the material in the presence of hydrogen. The simulation results not only verify the success of the proposed hydrogen embrittlement (HE) mechanism for TWIP steels, but also open a venue for the utility of these superior materials in the presence of hydrogen.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bouaziz, O. , Allain, S. , Scott, C. P. , Cugy, P. , and Barbier, D. , 2011, “ High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships,” Curr. Opin. Solid State Mater. Sci., 15(4), pp. 141–168. [CrossRef]
Bouaziz, O. , Allain, S. , and Scott, C. , 2008, “ Effect of Grain and Twin Boundaries on the Hardening Mechanisms of Twinning-Induced Plasticity Steels,” Scr. Mater., 58(6), pp. 484–487. [CrossRef]
Bal, B. , Gumus, B. , Gerstein, G. , Canadinc, D. , and Maier, H. J. , 2015, “ On the Micro-Deformation Mechanisms Active in High-Manganese Austenitic Steels Under Impact Loading,” Mater. Sci. Eng. A, 632, pp. 29–34. [CrossRef]
Gumus, B. , Bal, B. , Gerstein, G. , Canadinc, D. , and Maier, H. J. , 2016, “ Twinning Activity in High-Manganese Austenitic Steels Under High Velocity Loading,” Mater. Sci. Technol., 32(5), pp. 463–465.
Rahman, K. M. , Vorontsov, V. A. , and Dye, D. , 2015, “ The Effect of Grain Size on the Twin Initiation Stress in a TWIP Steel,” Acta Mater., 89, pp. 247–257. [CrossRef]
Hamada, A. S. , Karjalainen, L. P. , and Puustinen, J. , 2009, “ Fatigue Behavior of High-Mn TWIP Steels,” Mater. Sci. Eng. A, 517(1–2), pp. 68–77. [CrossRef]
Lee, S. , Kim, J. , Lee, S.-J. , and De Cooman, B. C. , 2011, “ Effect of Nitrogen on the Critical Strain for Dynamic Strain Aging in High-Manganese Twinning-Induced Plasticity Steel,” Scr. Mater., 65(6), pp. 528–531. [CrossRef]
Lee, T. , Koyama, M. , Tsuzaki, K. , Lee, Y. H. , and Lee, C. S. , 2012, “ Tensile Deformation Behavior of Fe-Mn-C TWIP Steel With Ultrafine Elongated Grain Structure,” Mater. Lett., 75, pp. 169–171. [CrossRef]
Koyama, M. , Sawaguchi, T. , Lee, T. , Lee, C. S. , and Tsuzaki, K. , 2011, “ Work Hardening Associated With ε-Martensitic Transformation, Deformation Twinning and Dynamic Strain Aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels,” Mater. Sci. Eng. A, 528(24), pp. 7310–7316. [CrossRef]
Gumus, B. , Bal, B. , Gerstein, G. , Canadinc, D. , Maier, H. J. , Guner, F. , and Elmadagli, M. , 2015, “ Twinning Activities in High-Mn Austenitic Steels Under High-Velocity Compressive Loading,” Mater. Sci. Eng. A, 648, pp. 104–112. [CrossRef]
Allain, S. , Chateau, J.-P. , Bouaziz, O. , Migot, S. , and Guelton, N. , 2004, “ Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe–Mn–C Alloys,” Mater. Sci. Eng. A, 387–389, pp. 158–162. [CrossRef]
Gutierrez-Urrutia, I. , and Raabe, D. , 2011, “ Dislocation and Twin Substructure Evolution During Strain Hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP Steel Observed by Electron Channeling Contrast Imaging,” Acta Mater., 59(16), pp. 6449–6462. [CrossRef]
Dumay, A. , Chateau, J.-P. , Allain, S. , Migot, S. , and Bouaziz, O. , 2008, “ Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel,” Mater. Sci. Eng. A, 483–484, pp. 184–187. [CrossRef]
Koyama, M. , Sawaguchi, T. , and Tsuzaki, K. , 2013, “ TWIP Effect and Plastic Instability Condition in an Fe-Mn-C Austenitic Steel,” ISIJ Int., 53(2), pp. 323–329. [CrossRef]
Dastur, Y. N. , and Leslie, W. C. , 1981, “ Mechanism of Work Hardening in Hadfield Manganese Steel,” Metall. Trans. A, 12(5), pp. 749–759. [CrossRef]
Hamada, A. S. , and Karjalainen, L. P. , 2011, “ Hot Ductility Behaviour of High-Mn TWIP Steels,” Mater. Sci. Eng. A, 528(3), pp. 1819–1827. [CrossRef]
Lambers, H.-G. , Rüsing, C. J. , Niendorf, T. , Geissler, D. , Freudenberger, J. , and Maier, H. J. , 2012, “ On the Low-Cycle Fatigue Response of Pre-Strained Austenitic Fe61Mn24Ni6.5Cr8.5 Alloy Showing TWIP Effect,” Int. J. Fatigue, 40, pp. 51–60. [CrossRef]
Frommeyer, G. , Brüx, U. , and Neumann, P. , 2003, “ Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes,” ISIJ Int., 43(3), pp. 438–446. [CrossRef]
Zhang, L. , Liu, X. , and Shu, K. , 2011, “ Microstructure and Mechanical Properties of Hot-Rolled Fe-Mn-C-Si TWIP Steel,” J. Iron Steel Res. Int., 18(12), pp. 45–64. [CrossRef]
Mittal, S. C. , Prasad, R. C. , and Deshmukh, M. B. , 1994, “ Effect of Hydrogen on Fracture of Austenitic Fe-Mn-Al Steel,” ISIJ Int., 34(2), pp. 211–216. [CrossRef]
Koyama, M. , Akiyama, E. , and Tsuzaki, K. , 2012, “ Effect of Hydrogen Content on the Embrittlement in a Fe-Mn-C Twinning-Induced Plasticity Steel,” Corros. Sci., 59, pp. 277–281. [CrossRef]
Koyama, M. , Akiyama, E. , Tsuzaki, K. , and Raabe, D. , 2013, “ Hydrogen-Assisted Failure in a Twinning-Induced Plasticity Steel Studied Under In Situ Hydrogen Charging by Electron Channeling Contrast Imaging,” Acta Mater., 61(12), pp. 4607–4618. [CrossRef]
Koyama, M. , Springer, H. , Merzlikin, S. V. , Tsuzaki, K. , Akiyama, E. , and Raabe, D. , 2014, “ Hydrogen Embrittlement Associated With Strain Localization in a Precipitation-Hardened Fe–Mn–Al–C Light Weight Austenitic Steel,” Int. J. Hydrogen Energy, 39(9), pp. 4634–4646. [CrossRef]
Koyama, M. , Akiyama, E. , and Tsuzaki, K. , 2012, “ Hydrogen Embrittlement in a Fe-Mn-C Ternary Twinning-Induced Plasticity Steel,” Corros. Sci., 54, pp. 1–4. [CrossRef]
Park, I. J. , Jeong, K. H. , Jung, J. G. , Lee, C. S. , and Lee, Y. K. , 2012, “ The Mechanism of Enhanced Resistance to the Hydrogen Delayed Fracture in Al-Added Fe-18Mn-0.6C Twinning-Induced Plasticity Steels,” Int. J. Hydrogen Energy, 37(12), pp. 9925–9932. [CrossRef]
Dieudonné, T. , Marchetti, L. , Wery, M. , Chêne, J. , Allely, C. , Cugy, P. , and Scott, C. P. , 2014, “ Role of Copper and Aluminum Additions on the Hydrogen Embrittlement Susceptibility of Austenitic Fe–Mn–C TWIP Steels,” Corros. Sci., 82, pp. 218–226. [CrossRef]
Kwon, Y. J. , Lee, T. , Lee, J. , Chun, Y. S. , and Lee, C. S. , 2015, “ Role of Cu on Hydrogen Embrittlement Behavior in Fe-Mn-C-Cu TWIP Steel,” Int. J. Hydrogen Energy, 40(23), pp. 7409–7419. [CrossRef]
Zan, N. , Ding, H. , Guo, X. , Tang, Z. , and Bleck, W. , 2015, “ Effects of Grain Size on Hydrogen Embrittlement in a Fe-22Mn-0.6C TWIP Steel,” Int. J. Hydrogen Energy, 40(33), pp. 10687–10696. [CrossRef]
Bai, Y. , Momotani, Y. , Chen, M. C. , Shibata, A. , and Tsuji, N. , 2016, “ Effect of Grain Refinement on Hydrogen Embrittlement Behaviors of High-Mn TWIP Steel,” Mater. Sci. Eng. A, 651, pp. 935–944. [CrossRef]
Canadinc, D. , Sehitoglu, H. , and Maier, H. J. , 2007, “ The Role of Dense Dislocation Walls on the Deformation Response of Aluminum Alloyed Hadfield Steel Polycrystals,” Mater. Sci. Eng. A, 454–455, pp. 662–666. [CrossRef]
Canadinc, D. , Biyikli, E. , Niendorf, T. , and Maier, H. J. , 2011, “ Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation-Grain Boundary Interactions,” Adv. Eng. Mater., 13(4), pp. 281–287. [CrossRef]
Karaman, I. , Sehitoglu, H. , Beaudoin, A. J. , Chumlyakov, Y. I. , Maier, H. J. , and Tome, C. N. , 2000, “ Modeling the Deformation Behavior of Hadfield Steel Single and Polycrystals Due to Twinning and Slip,” Acta Mater., 48(9), pp. 2031–2047. [CrossRef]
Dancette, S. , Delannay, L. , Renard, K. , Melchior, M. A. , and Jacques, P. J. , 2012, “ Crystal Plasticity Modeling of Texture Development and Hardening in TWIP Steels,” Acta Mater., 60(5), pp. 2135–2145. [CrossRef]
Zhou, P. , Liang, Z. Y. , Liu, R. D. , and Huang, M. X. , 2016, “ Evolution of Dislocations and Twins in a Strong and Ductile Nanotwinned Steel,” Acta Mater., 111, pp. 96–107. [CrossRef]
Michler, T. , and Naumann, J. , 2008, “ Hydrogen Environment Embrittlement of Austenitic Stainless Steels at Low Temperatures,” Int. J. Hydrogen Energy, 33(8), pp. 2111–2122. [CrossRef]
Bal, B. , Koyama, M. , Gerstein, G. , Maier, H. J. , and Tsuzaki, K. , 2016, “ Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of Twinning-Induced Plasticity Steel Pre-Charged With High-Pressure Hydrogen Gas,” Int. J. Hydrogen Energy, 41(34), pp. 15362–15372. [CrossRef]
Lebensohn, R. A. , and Tomé, C. N. , 1993, “ A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys,” Acta Metall. Mater., 41(9), pp. 2611–2624. [CrossRef]
Canadinc, D. , Karaman, I. , Sehitoglu, H. , Chumlyakov, Y. I. , and Maier, H. J. , 2003, “ The Role of Nitrogen on the Deformation Response of Hadfield Steel Single Crystals,” Metall. Mater. Trans. A, 34(9), pp. 1821–1831. [CrossRef]
Canadinc, D. , Sehitoglu, H. , Maier, H. J. , and Chumlyakov, Y. I. , 2005, “ Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals,” Acta Mater., 53(6), pp. 1831–1842. [CrossRef]
Biyikli, E. , Canadinc, D. , Maier, H. J. , Niendorf, T. , and Top, S. , 2010, “ Three-Dimensional Modeling of the Grain Boundary Misorientation Angle Distribution Based on Two-Dimensional Experimental Texture Measurements,” Mater. Sci. Eng. A, 527(21–22), pp. 5604–5612. [CrossRef]
Kocks, U. F. , Tomé, C. N. , and Wenk, H. R. , 1998, Texture and Anisotropy, Cambridge University Press, New York.
Sofronis, P. , and Birnbaum, H. K. , 1995, “ Mechanics of the Hydrogen-Dislocation-Impurity Interactions—Part I: Increasing Shear Modulus,” J. Mech. Phys. Solids, 43(1), pp. 49–90. [CrossRef]
McCormick, P. G. , and Ling, C. P. , 1995, “ Numerical Modelling of the Portevin-Le Chatelier Effect,” Acta Metall. Mater., 43(5), pp. 1969–1977. [CrossRef]
Estrin, Y. , and McCormick, P. G. , 1991, “ Modelling the Transient Flow Behaviour of Dynamic Strain Ageing Materials,” Acta Metall. Mater., 39(12), pp. 2977–2983. [CrossRef]
Soare, M. A. , and Curtin, W. A. , 2008, “ Single-Mechanism Rate Theory for Dynamic Strain Aging in fcc Metals,” Acta Mater., 56(15), pp. 4091–4101. [CrossRef]
McCormick, P. G. , 1988, “ Theory of Flow Localisation Due to Dynamic Strain Ageing,” Acta Metall., 36(12), pp. 3061–3067. [CrossRef]
Ling, C. P. , and McCormick, P. G. , 1990, “ Strain Rate Sensitivity and Transient Behaviour in an Al Mg Si Alloy,” Acta Metall. Mater., 38(12), pp. 2631–2635. [CrossRef]
Bal, B. , Gumus, B. , and Canadinc, D. , 2016, “ Incorporation of Dynamic Strain Aging Into a Viscoplastic Self-Consistent Model for Predicting the Negative Strain Rate Sensitivity of Hadfield Steel,” J. Eng. Mater. Technol., 138(3), p. 031012.
Soare, M. A. , and Curtin, W. A. , 2008, “ Solute Strengthening of Both Mobile and Forest Dislocations: The Origin of Dynamic Strain Aging in fcc Metals,” Acta Mater., 56(15), pp. 4046–4061. [CrossRef]
Anjabin, N. , Karimi Taheri, A. , and Kim, H. S. , 2013, “ Simulation and Experimental Analyses of Dynamic Strain Aging of a Supersaturated Age Hardenable Aluminum Alloy,” Mater. Sci. Eng. A, 585, pp. 165–173. [CrossRef]
Narayanan, S. , McDowell, D. L. , and Zhu, T. , 2014, “ Crystal Plasticity Model for BCC Iron Atomistically Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocation,” J. Mech. Phys. Solids, 65, pp. 54–68. [CrossRef]
Kang, K. , Yin, J. , and Cai, W. , 2014, “ Stress Dependence of Cross Slip Energy Barrier for Face-Centered Cubic Nickel,” J. Mech. Phys. Solids, 62, pp. 181–193. [CrossRef]
Springer, F. , Nortmann, A. , and Schwing, C. , 1998, “ A Study of Basic Processes Characterizing Dynamic Strain Ageing,” Phys. Status Solidi A, 170(1), pp. 63–81. [CrossRef]
Ono, K. , 1968, “ Temperature Dependence of Dispersed Barrier Hardening,” J. Appl. Phys., 39(3), pp. 1803–1806. [CrossRef]
Bayley, C. J. , Brekelmans, W. A. M. , and Geers, M. G. D. , 2006, “ A Comparison of Dislocation Induced Back Stress Formulations in Strain Gradient Crystal Plasticity,” Int. J. Solids Struct., 43(24), pp. 7268–7286. [CrossRef]

Figures

Grahic Jump Location
Fig. 5

Microstructure of hydrogen-free specimen deformed to 30% at 0.6 × 10−3 s−1: (a) EBSD micrograph and orientation map, (b) TEM micrograph showing HDDWs, (c) GBMA distribution map, and (d) TEM micrograph demonstrating the presence of nanotwins

Grahic Jump Location
Fig. 6

Microstructure of hydrogen-charged specimen deformed to 30% at 0.6 × 10−3 s−1: (a) EBSD micrograph and orientation map, (b) TEM micrograph showing interactions with nanotwins, (c) GBMA distribution map, and (d) TEM micrograph with HDDWs

Grahic Jump Location
Fig. 4

Microstructure of hydrogen-charged specimen deformed to 30% at 0.6 × 10−4 s−1: (a) EBSD micrograph and orientation map, (b) TEM micrograph, (c) GBMA distribution map, and (d) the in situ SEM micrograph of the surface

Grahic Jump Location
Fig. 3

Microstructure of hydrogen-free specimen deformed to 30% at 0.6 × 10−4 s−1: (a) EBSD micrograph and orientation map, (b) TEM micrograph, (c) GBMA distribution map, and (d) in situ SEM micrograph of the surface

Grahic Jump Location
Fig. 2

Schematic representation of the proposed five-step microscale fracture process in the presence of hydrogen

Grahic Jump Location
Fig. 1

Tensile response of the Fe-23Mn-0.5C TWIP steels with and without hydrogen charging at different strain rates. Data recompiled from Ref. [36].

Grahic Jump Location
Fig. 7

Scanning electron microscopy surface fractographs of the (a) hydrogen-free specimen at 0.6 × 10−4 s−1 (b) hydrogen-free specimen at 0.6 × 10−3 s−1 (c) hydrogen-charged specimen at 0.6 × 10−4 s−1, and (d) hydrogen-charged specimen at 0.6 × 10−3 s−1

Grahic Jump Location
Fig. 13

Visco-plastic self-consistent simulations of the deformation response of Fe-23Mn-0.5C hydrogen-charged TWIP steel at 0.6 × 10−4 s−1

Grahic Jump Location
Fig. 8

Schematic representation of (a) misorientation angle between the surface normals of neighboring grains and (b) angle between the plane normal of the active slip system and the plane normal of the active twinning system

Grahic Jump Location
Fig. 10

Visco-plastic self-consistent simulations of the deformation response of Fe-23Mn-0.5C hydrogen-free TWIP steel at 0.6 × 10−3 s−1

Grahic Jump Location
Fig. 11

Visco-plastic self-consistent simulations of the deformation response of Fe-23Mn-0.5C hydrogen-free TWIP steel at 0.6 × 10−4 s−1

Grahic Jump Location
Fig. 12

Visco-plastic self-consistent simulations of the deformation response of Fe-23Mn-0.5C hydrogen-charged TWIP steel at 0.6 × 10−3 s−1

Grahic Jump Location
Fig. 9

Flowchart describing the approach adopted in the present crystal plasticity model

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In