0
Research Papers

Quantum Conductance of Copper–Carbon Nanotube Composites

[+] Author and Article Information
Yangchuan Li, Eric Fahrenthold

Department of Mechanical Engineering,
University of Texas,
Austin, TX 78712

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received September 7, 2017; final manuscript received January 17, 2018; published online April 6, 2018. Assoc. Editor: Peter W. Chung.

J. Eng. Mater. Technol 140(3), 031007 (Apr 06, 2018) (11 pages) Paper No: MATS-17-1257; doi: 10.1115/1.4039293 History: Received September 07, 2017; Revised January 17, 2018

Carbon nanotube (CNT)-based conductors are the focus of considerable ongoing experimental research, which has demonstrated their potential to offer increased current carrying capacity or higher specific conductance, as compared to conventional copper cabling. Complementary analytical research has been hindered by the high computational cost of large-scale quantum models. The introduction of certain simplifying assumptions, supported by critical comparisons to exact solutions and the published literature, allows for quantum modeling work to assist experiment in composite conductor development. Ballistic conductance calculations may be used to identify structure–property relationships and suggest the most productive avenues for future nanocomposite conductor research.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wernik, J. M. , and Meguid, S. A. , 2010, “ Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes,” ASME Appl. Mech. Rev., 63(5), p. 50801. [CrossRef]
Volder, M. F. L. D. , Tawfick, S. H. , Baughman, R. H. , and Hart, A. J. , 2013, “ Carbon Nanotubes: Present and Future Commercial Applications,” Science, 339(6119), pp. 535–539. [CrossRef] [PubMed]
Wang, X. , Behabtu, N. , Young, C. C. , Tsentalovich, D. E. , Pasquali, M. , and Kono, J. , 2014, “ High-Ampacity Power Cables of Tightly-Packed and Aligned Carbon Nanotubes,” Adv. Funct. Mater., 24(21), pp. 3241–3249. [CrossRef]
Subramaniam, C. , Yamada, T. , Kobashi, K. , Sekiguchi, A. , Futaba, D. N. , Yumura, M. , and Hata, K. , 2013, “ One Hundred Fold Increase in Current Carrying Capacity in a Carbon Nanotube-Copper Composite,” Nat. Commun., 4, p. 2202. [CrossRef] [PubMed]
Zhao, Y. , Wei, J. , Vajtai, R. , Ajayan, P. M. , and Barrera, E. V. , 2011, “ Iodine Doped Carbon Nanotube Cables Exceeding Specific Electrical Conductivity of Metals,” Sci. Rep., 1, p. 83. [CrossRef] [PubMed]
Meguid, W. S. B. , Meguid, S. A. , Zhu, Z. H. , and J, M. , 2011, “ Modeling Electrical Conductivities of Nanocomposites With Aligned Carbon Nanotubes,” Nanotechnol., 22(48), p. 485704. [CrossRef]
Sundaram, R. , Yamada, T. , Hata, K. , and Sekiguchi, A. , 2017, “ Electrical Performance of Lightweight CNT-Cu Composite Wires Impacted by Surface and Internal Cu Spatial Distribution,” Sci. Rep., 7, p. 9267.
Yang, C. , 2013, “First Principle Studies of Cu-Carbon Nanotube Hybrid Structures With Emphasis on the Electronic Structures and the Transport Properties,” Ph.D. thesis, University of Central Florida, Orlando, FL.
Ghorbani-Asl, M. , Bristowe, P. D. , and Koziol, K. , 2015, “ A Computational Study of the Quantum Transport Properties of a Cu-CNT Composite,” Phys. Chem. Chem. Phys., 17(28), pp. 18273–18277. [CrossRef] [PubMed]
Behabtu, N. , Young, C. C. , Tsentalovich, D. E. , Kleinerman, O. , Wang, X. , Ma, A. W. K. , Bengio, E. A. , ter Waarbeek, R. F. , de Jong, J. J. , Hoogerwerf, R. E. , Fairchild, S. B. , Ferguson, J. B. , Maruyama, B. , Kono, J. , Talmon, Y. , Cohen, Y. , Otto, M. J. , and Pasquali, M. , 2013, “ Strong, Light, Multifunctional Fibers of Carbon Nanotubes With Ultrahigh Conductivity,” Science, 339(6116), pp. 182–186. [CrossRef] [PubMed]
Wang, J. N. , Luo, X. G. , Wu, T. , and Chen, Y. , 2014, “ High-Strength Carbon Nanotube Fibre-Like Ribbon With High Ductility and High Electrical Conductivity,” Nat. Commun., 5(2005), p. 3848. [PubMed]
Lopez-Bezanilla, A. , 2013, “ Electronic Transport Properties of Chemically Modified Double-Walled Carbon Nanotubes,” J. Phys. Chem. C, 117(29), pp. 15266–15271. [CrossRef]
Yang, C. , and Chen, Q. , 2013, “ Electronic Structure and Transport Properties of Carbon Nanotube Adsorbed With a Copper Chain,” Int. J. Smart Nano Mater., 4(3), pp. 143–149. [CrossRef]
Du, X. , Chen, Z. , Zhang, J. , Yao, C.-S. , Chen, C. , and Fan, X.-L. , 2012, “ Structural and Electronic Properties of Conducting Cu Nanowire Encapsulated in Semiconducting Zigzag Carbon Nanotubes: A First-Principles Study,” Phys. Status Solidi B, 249(5), pp. 1033–1038. [CrossRef]
Yan, Q. , Wu, J. , Zhou, G. , Duan, W. , and Gu, B.-L. , 2005, “ Ab Initio Study of Transport Properties of Multiwalled Carbon Nanotubes,” Phys. Rev. B, 72(15), p. 155425. [CrossRef]
Moradian, R. , Azadi1, S. , and Refii-tabar, H. , 2007, “ When Double-Wall Carbon Nanotubes Can Become Metallic or Semiconducting,” J. Phys.: Condens. Matter, 19(17), p. 176209. [CrossRef] [PubMed]
Soto, M. , Boyer, T. A. , Biradar, S. , Ge, L. , Vajtai, R. , Elías-Zúñiga, A. , Ajayan, P. M. , and Barrera, E. V. , 2015, “ Effect of Interwall Interaction on the Electronic Structure of Double-Walled Carbon Nanotubes,” Nanotechnol., 26(16), p. 165201. [CrossRef]
Li, E. Y. , and Marzari, N. , 2011, “ Improving the Electrical Conductivity of Carbon Nanotube Networks: A First-Principles Study,” ACS Nano, 5(12), pp. 9726–9736. [CrossRef] [PubMed]
Buia, C. , Buldum, A. , and Lu, J. P. , 2003, “ Quantum Interference Effects in Electronic Transport Through Nanotube Contacts,” Phys. Rev. B, 67(11), pp. 113409–113412. [CrossRef]
Xu, F. , Sadrzadeh, A. , Xu, Z. , and Yakobson, B. I. , 2013, “ Can Carbon Nanotube Fibers Achieve the Ultimate Conductivity?—Coupled-Mode Analysis for Electron Transport Through the Carbon Nanotube Contact,” J. Appl. Phys., 114(6), p. 063714.
Buldum, A. , and Lu, J. P. , 2001, “ Contact Resistance Between Carbon Nanotubes,” Phys. Rev. B, 63(16), p. 161403. [CrossRef]
Fuhrer, P. L. M. S. , Nygård, J. , Shih, L. , Forero, M. , Yoon, Y.-G. , Mazzoni, M. S. C. , Choi, H. J. , Ihm, J. , Louie, S. G. , Zettl ., A. , and McEuen , 2000, “ Crossed Nanotube Junctions,” Science, 288(5465), pp. 494–497. [CrossRef] [PubMed]
Soler, J. M. , Artacho, E. , Gale, J. D. , García, A. , Junquera, J. , Ordejón, P. , and Sánchez-Portal, D. , 2002, “ The SIESTA Method for Ab Initio Order- N Materials Simulation,” J. Phys. Condens. Matter, 14(11), p. 2745. [CrossRef]
Perdew, J. P. , Burke, K. , and Ernzerhof, M. , 1996, “ Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., 77(18), pp. 3865–3868. [CrossRef] [PubMed]
Nguyen, C. V. , Hieu, N. N. , and Nguyen, D. T. , 2015, “ Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain,” Nanoscale Res. Lett., 10, p. 433. [CrossRef] [PubMed]
Grimme, S. , 2011, “ Density Functional Theory With London Dispersion Corrections,” WIREs Comput. Mol. Sci., 1(2), pp. 211–228. [CrossRef]
Matsuda, Y. , Tahir-Kheli, J. , and Goddard, W. A., III , 2010, “ Definitive Band Gaps for Single-Wall Carbon Nanotubes,” J. Phys. Chem. Lett., 1(19), pp. 2946–2950. [CrossRef]
Pack, J. D. , and Monkhorst, H. J. , 1976, “ Special Points for Brillouin-Zone Integrations,” Phys. Rev. B, 13(12), pp. 5188–5192. [CrossRef]
Datta, S. , 2000, “ Nanoscale Device Modeling: The Green's Function Method,” Superlattices Microstruct., 28(4), pp. 253–278. [CrossRef]
Imry, Y. , and Landauer, R. , 1999, “ Conductance Viewed as Transmission,” Rev. Mod. Phys., 71(2), pp. S306–S312. [CrossRef]
Band, Y. B. , and Avishai, Y. , 2012, Quantum Mechanics With Applications to Nanotechnology and Information Science, 1st ed., Elsevier, Amsterdam, The Netherlands.
Kong, J. , Yenilmez, E. , Tombler, T. W. , Kim, W. , Dai, H. , Laughlin, R. B. , Liu, L. , Jayanthi, C. S. , and Wu, S. Y. , 2001, “ Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides,” Phys. Rev. Lett., 87(10), p. 106801. [CrossRef] [PubMed]
Stokbro, K. , Taylor, J. , Brandbyge, M. , and Ordejón, P. , 2003, “ TranSIESTA: A Spice for Molecular Electronics,” Ann. N. Y. Acad. Sci., 1006, pp. 212–226. [CrossRef] [PubMed]
Song, W. , Ni, M. , Lu, J. , Gao, Z. , Nagase, S. , Yu, D. , Ye, H. , and Zhang, X. , 2005, “ Electronic Structures of Semiconducting Double-Walled Carbon Nanotubes: Important Effect of Interlay Interaction,” Chem. Phys. Lett., 414(4–6), pp. 429–433. [CrossRef]
Monthioux, M. , 2012, “ Introduction to Carbon Nanotubes,” Carbon Meta-Nanotubes: Synthesis, Properties and Applications, 1st ed., Wiley, Hoboken, NJ.
Pollack, A. , Alnemrat, S. , Chamberlain, T. W. , Khlobystov, A. N. , Hooper, J. P. , and Osswald, S. , 2014, “ Electronic Property Modification of Single-Walled Carbon Nanotubes by Encapsulation of Sulfur-Terminated Graphene Nanoribbons,” Small, 10(24), pp. 5077–5086. [PubMed]
Ouyang, M. , Huang, J.-L. , Cheung, C. L. , and Lieber, C. M. , 2001, “ Energy Gaps in ‘Metallic’ Single-Walled Carbon Nanotubes,” Science, 292(5517), pp. 702–705. [CrossRef] [PubMed]
Blase, X. , Benedict, L. X. , Shirley, E. L. , and Louie, S. G. , 1994, “ Hybridization Effects and Metallicity in Small Radius Carbon Nanotubes,” Phys. Rev. Lett., 72(12), pp. 1878–1881. [CrossRef] [PubMed]
Zólyomi, V. , and Kürti, J. , 2004, “ First-Principles Calculations for the Electronic Band Structures of Small Diameter Single-Wall Carbon Nanotubes,” Phys. Rev. B, 70(8), p. 085403. [CrossRef]
Abadir, G. B. , Walus, K. , and Pulfrey, D. L. , 2009, “ Basis-Set Choice for DFT/NEGF Simulations of Carbon Nanotubes,” J. Comput. Electron., 8(1), pp. 1–9. [CrossRef]
Ouyang, M. , Huang, J.-L. , and Lieber, C. M. , 2002, “ Scanning Tunneling Microscopy Studies of the One-Dimensional Electronic Properties of Single-Walled Carbon Nanotubes,” Annu. Rev. Phys. Chem., 53, pp. 201–220. [CrossRef] [PubMed]
Lu, X. , and Chen, Z. , 2005, “ Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes,” Chem. Rev., 105(10), pp. 3643–3696.
Yan, L. , Rotkin, S. V. , and Ravaioli, U. , 2003, “ Electronic Response and Bandstructure Modulation of Carbon Nanotubes in a Transverse Electrical Field,” Nano Lett., 3(2), pp. 183–187. [CrossRef]
Wan, R. , Peng, J.-h. , Zhang, X. , and Leng, C. , 2013, “ Band Gaps and Radii of Metallic Zigzag Single Wall Carbon Nanotubes,” Phys. B, 417, pp. 1–3. [CrossRef]
Li, Y. , 2017, “Ab Initio Study of Carbon Nanotube Based Conductors,” M.S. thesis, University of Texas at Austin, Austin, TX.
Baskin, Y. , and Meyer, L. , 1955, “ Lattice Constants of Graphite at Low Temperatures,” Phys. Rev., 100(2), p. 544. [CrossRef]
Moore, K. E. , Tune, D. D. , and Flavel, B. S. , 2015, “ Double-Walled Carbon Nanotube Processing,” Adv. Mater., 27(20), pp. 3105–3137. [CrossRef] [PubMed]
Liu, K. , Jin, C. , Hong, X. , Kim, J. , Zettl, A. , Wang, E. , and Wang, F. , 2014, “ Van Der Waals-Coupled Electronic States in Incommensurate Double-Walled Carbon Nanotubes,” Nat. Phys., 10(10), pp. 737–742. [CrossRef]
Hanaoka, Y. , Hinode, K. , Takeda, K. , and Kodama, D. , 2002, “ Increase in Electrical Resistivity of Copper and Aluminum Fine Lines,” Mater. Trans., 43(7), pp. 1621–1623. [CrossRef]
Park, J. Y. , Rosenblatt, S. , Yaish, Y. , Sazonova, V. , Üstünel, H. , Braig, S. , Arias, T. A. , Brouwer, P. W. , and McEuen, P. L. , 2004, “ Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes,” Nano Lett., 4(3), pp. 517–520. [CrossRef]
Mann, D. , Javey, A. , Kong, J. , Wang, Q. , and Dai, H. , 2003, “ Ballistic Transport in Metallic Nanotubes With Reliable Pd Ohmic Contacts,” Nano Lett., 3(11), pp. 1541–1544. [CrossRef]
Berger, C. , Ponchral, P. , and De Heer, W. , “ Ballistic Conduction in Multiwalled Carbon Nanotubes,” J. Nanosci. Nanotechnol., 3(1–2), pp. 171–177. [PubMed]
Janas, D. , Herman, A. P. , Boncel, S. , and Koziol, K. K. K. , 2014, “ Iodine Monochloride as a Powerful Enhancer of Electrical Conductivity of Carbon Nanotube Wires,” Carbon N. Y., 73, pp. 225–233. [CrossRef]
Janas, D. , Milowska, K. Z. , Bristowe, P. , and Koziol, K. , 2017, “ Improving the Electrical Properties of Carbon Nanotubes With Interhalogen Compounds,” Nanoscale, 9(9), pp. 3212–3221. [CrossRef] [PubMed]
Ruiz-Serrano, Á. , and Skylaris, C.-K. , 2013, “ A Variational Method for Density Functional Theory Calculations on Metallic Systems With Thousands of Atoms,” J. Chem. Phys., 139, p. 054107. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Dimensions of the CNT(M)@Cu conductor

Grahic Jump Location
Fig. 2

Dimensions of the CNT(M)@Cu (left) and Cu@CNT(M) (right) doped junctions

Grahic Jump Location
Fig. 3

Dimensions of the CNT(S)@Cu conductor

Grahic Jump Location
Fig. 4

Dimensions of the CNT(S)@Cu (left) and Cu@CNT(S) (right) doped junctions

Grahic Jump Location
Fig. 5

Chromium doped CNT–CNT junction (left) and copper–copper junction (right)

Grahic Jump Location
Fig. 6

One supercell for CNT(5,5)@CNT(18,0) (left) and for CNT(9,0)@CNT(10,10) (right)

Grahic Jump Location
Fig. 7

Conductor, undoped junction, and doped junction for the Cu@Cu models

Grahic Jump Location
Fig. 8

Conductor, undoped junction, and doped junction for the CNT(M)@Cu models

Grahic Jump Location
Fig. 9

Conductor, undoped junction, and doped junction for the Cu@CNT(M) models

Grahic Jump Location
Fig. 10

Conductor, undoped junction, and doped junction for CNT(M)@CNT(M) models

Grahic Jump Location
Fig. 11

Conductance and specific conductance: copper and metallic CNT models

Grahic Jump Location
Fig. 12

Conductance and specific conductance: copper and semiconducting CNT models

Grahic Jump Location
Fig. 13

Conductance and specific conductance: commensurate CNT models

Grahic Jump Location
Fig. 14

Conductance and specific conductance: incommensurate CNT model

Grahic Jump Location
Fig. 15

Specific conductance of the double wall models

Grahic Jump Location
Fig. 16

Conductance of the doped junctions

Grahic Jump Location
Fig. 17

Conductance of the undoped junctions

Grahic Jump Location
Fig. 18

Relative specific conductivity, doped Cu–CNT

Grahic Jump Location
Fig. 19

Relative specific conductivity, doped CNT

Grahic Jump Location
Fig. 20

Relative specific conductivity, ideal Cu–CNT

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In