Tjong,
S. C.
, and
Chen,
H.
, 2004, “Nanocrystalline Materials and Coatings,” Mater. Sci. Eng. R,
45(1–2), pp. 1–88.

Liu,
Z. J.
,
Zhang,
C. H.
,
Shen,
Y. G.
, and
Mai,
Y.-W.
, 2004, “Monte Carlo Simulation of Nanocrystalline TiN/Amorphous SiN_{x} Composite Films,” J. Appl. Phys.,
95(2), p. 758.

Lu,
C.
,
Mai,
Y.-W.
, and
Shen,
Y. G.
, 2006, “Recent Advances on Understanding the Origin of Superhardness in Nanocomposite Coatings: A Critical Review,” J. Mater. Sci.,
41(3), pp. 937–950.

Yang,
W.
,
Chen,
L.
, and
Messing,
G.
, 1995, “Computer Simulation of Anisotropic Grain Growth,” Mater. Sci. Eng. A,
195(1–2), pp. 179–187.

Fan,
D.
, and
Chen,
L.-Q.
, 1997, “Diffusion-Controlled Grain Growth in Two-Phase Solids,” Acta Mater.,
45(8), pp. 3297–3310.

Fan,
D.
,
Chen,
S. P.
, and
Chen,
L. Q.
, 1999, “Computer Simulation of Grain Growth Kinetics With Solute Drag,” J. Mater. Res.,
14(3), pp. 1113–1123.

Blikstein,
P.
, and
Tschiptschin,
A. P.
, 1999, “Monte Carlo Simulation of Grain Growth,” Mater. Res.,
2(3), pp. 133–137.

Chen,
L. Q.
, 2002, “Phase-Field Models for Microstructure Evolution,” Annu. Rev. Mater. Res.,
32(1), pp. 113–140.

Boettinger,
W. J.
,
Warren,
J. A.
,
Beckermann,
C.
, and
Karma,
A.
, 2002, “Phase Field Simulation of Solidification,” Annu. Rev. Mater. Res.,
32(1), pp. 163–194.

Granasy,
L.
,
Pusztai,
T.
,
Borzsonyi,
T.
,
Toth,
G.
,
Tegze,
G.
,
Warren,
J. A.
, and
Douglas,
J. F.
, 2006, “Phase Field Theory of Crystal Nucleation and Polycrystalline Growth: A Review,” J. Mater. Res.,
21(2), pp. 309–319.

Emmerich,
H.
, 2008, “Advances of and by Phase-Field Modeling in Condensed-Matter Physics,” Adv. Phys.,
57(1), pp. 1–87.

Moelans,
N.
,
Blanpain,
B.
, and
Wollants,
P.
, 2008, “An Introduction to Phase-Field Modeling of Microstructure Evolution,” Calphad,
32(2), pp. 268–294.

Steinbach,
I.
, 2009, “Phase-Field Models in Materials Science,” Modell. Simul. Mater. Sci. Eng.,
17(7), pp. 1–31.

Novikov,
V. Y.
, 1999, “Texture Development During Grain Growth in Polycrystals With Strong Preferred Orientation,” Acta Mater.,
47(6), pp. 1935–1943.

Humphreys,
F. J.
, 1997, “A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures—Part I: The Basic Model,” Acta Mater.,
45(10), pp. 4231–4240.

Mehnert,
K.
, and
Klimanek,
P.
, 1996, “Monte Carlo Simulation of Grain Growth in Textured Metals,” Scr. Mater.,
35(6), pp. 699–704.

Grest,
G. S.
,
Srolovitz,
D. J.
, and
Andreson,
M. P.
, 1985, “Computer Simulation of Grain Growth IV. Anisotropic Grain Boundary Energies,” Acta Metall.,
33(3), pp. 509–520.

Ono,
N.
,
Kimura,
K.
, and
Watanabe,
T.
, 1999, “Monte Carlo Simulation of Grain Growth With the Full Spectra of Grain Orientation and Grain Boundary Energy,” Acta Mater.,
47(3), pp. 1007–1017.

Allen, J. B.
, 2016, “Simulations of Anisotropic Texture Evolution on Paramagnetic and Diamagnetic Materials Subject to a Magnetic Field Using Q-State Monte Carlo,” ASME J. Eng. Mat. Technol.,
138(4), p. 041012.

Cai,
Z.-X.
, and
Welch,
D. O.
, 1994, “Simulation Study of Grain Growth in Layered Materials; Application to YBa_{2}Cu_{3}O_{7} Ceramics,” Philos. Mag. B,
70(1), pp. 141–150.

Anderson,
M. P.
,
Srolovitz,
D. J.
,
Grest,
G. S.
, and
Sahni,
P. S.
, 1984, “Computer Simulation of Grain Growth—Part I: Kinetics,” Acta Metall.,
32(5), pp. 783–791.

Allen,
J. B.
,
Cornwell,
C. F.
,
Devine,
B. D.
, and
Welch,
C. R.
, 2013, “Simulations of Anisotropic Grain Growth in Single Phase Materials Using Q-State Monte Carlo,” Comput. Mater. Sci.,
71, pp. 25–32.

Soares,
A.
,
Ferro,
A. C.
, and
Fortes,
M. A.
, 1985, “Computer Simulation of Grain Growth in a Bimodal Polycrystal,” Scr. Metall.,
19(12), pp. 1491–1496.

Kawasaki,
K.
,
Nagai,
T.
, and
Nagashima,
K.
, 1989, “Vertex Models for Two-Dimensional Grain Growth,” Philos. Mag. B,
60(3), pp. 399–421.

Fuchizaki,
K.
,
Kusaba,
T.
, and
Kawasaki,
K.
, 1995, “Computer Modeling of Three-Dimensional Cellular-Pattern Growth,” Philos. Mag. B,
71(3), pp. 333–357.

Weygand,
D.
,
Bréchet,
Y.
, and
Léepinoux,
J.
, 1998, “A Vertex Dynamics Simulation of Grain Growth in Two Dimensions,” Philos. Mag. B,
78(4), pp. 329–352.

Baxter,
R. J.
, 1982, Exactly Solved Models in Statistical Mechanics,
Academic Press,
London.

Burke,
J. E.
, and
Turnbull,
D.
, 1952, “Recrystallization and Grain Growth,” Prog. Met. Phys.,
3, pp. 220–244.

Kazaryan,
A.
,
Wang,
Y.
,
Dregia,
S. A.
, and
Patton,
B. R.
, 2000, “Generalized Phase-Field Model for Computer Simulation of Grain Growth in Anisotropic Systems,” Phys. Rev. B,
61(21), p. 14275.

Suwa,
Y.
, and
Saito,
Y.
, 2003, “Computer Simulation of Grain Growth by the Phase Field Mode. Effect of Interfacial Energy on Kinetics of Grain Growth,” Mater. Trans.,
44(11), pp. 2245–2251.

Krill III,
C. E.
, and
Chen,
L. Q.
, 2002, “Computer Simulation of 3-D Grain Growth Using a Phase-Field Model,” Acta Mater.,
50(12), pp. 3059–3075.

Tien,
J. K.
, and
Copley,
S. M.
, 1971, “The Effect of Uniaxial Stress on the Periodic Morphology of Coherent Gamma Prime Precipitates in Nickel-Base Superalloy Crystals,” Metall. Trans.,
2(1), pp. 215–219.

Pollock,
T. M.
, and
Argon,
A. S.
, 1994, “Directional Coarsening in Nickel-Base Single Crystals With High Volume Fractions of Coherent Precipitates,” Acta Metall. Mater.,
42(6), pp. 1859–1874.

Veron,
M.
,
Brechet,
Y.
, and
Louchet,
F.
, 1996, “Strain Induced Directional Coarsening in Ni Based Alloys,” Scr. Mater.,
34(12), pp. 1883–1886.

Carpenter,
G. J.
, 1973, “The Dilatational Misfit of Zirconium Hydrides Precipitated in Zirconium,” J. Nucl. Mater.,
48(3), pp. 264–266.

Zanellato,
O.
,
Preuss,
M.
,
Buffiere,
J. Y.
,
Ribeiro,
F.
,
Steuwer,
A.
,
Desquines,
J.
,
Andrieux,
J.
, and
Krebs,
B.
, 2012, “Synchrotron Diffraction Study of Dissolution and Precipitation Kinetics of Hydrides in Zircaloy-4,” J. Nucl. Mater.,
420(1–3), pp. 537–547.

Sridhar,
N.
,
Richman,
J. M.
, and
Srolovitz,
D. J.
, 1997, “Microstructural Stability of Stressed Lamellar and Fiber Composites,” Acta Mater.,
45(7), pp. 2715–2733.

Chen,
L. Q.
, and
Wang,
Y. Z.
, 1996, “The Continuum Field Approach to Modeling Microstructural Evolution,” J. Miner. Met. Mater. Soc.,
48(12), pp. 13–18.

[CrossRef]
Wang,
Y. Z.
, and
Chen,
C. L.
, 1999, “Simulation of Microstructure Evolution,” Methods in Materials Research,
E. N. Ksufmann
,
R. Abbaschian
,
A. Bocarsly
,
C. L. Chien
, and
D. Dollimore
, eds.,
Wiley,
New York, pp. 2a.3.1–2a.3.23.

Onuki,
A.
, 1989, “Ginzburg-Landau Approach to Elastic Effects in the Phase Field Separation of Solids,” J. Phys. Soc. Jpn.,
58(9), p. 3065.

Nishimori,
H.
, and
Onuki,
A.
, 1990, “Pattern Formation in Phase-Separating Alloys With Cubic Symmetry,” Phys. Rev. B,
42(1), pp. 980–983.

Sagui,
C.
,
Orlikowski,
D.
,
Somoza,
A.
, and
Roland,
C.
, 1998, “Three-Dimensional Simulations of Ostwald Ripening With Elastic Effects,” Phys. Rev. E,
58(4), p. 4092.

Sheng,
G.
,
Bhattacharyya,
S.
,
Zhang,
H.
,
Chang,
K.
,
Shang,
S. L.
,
Mathaudhu,
S. N.
,
Liu,
Z. K.
, and
Chen,
L. Q.
, 2012, “Effective Elastic Properties of Polycrystals Based on Phase-Field Description,” Mater. Sci. Eng. A,
554(1), pp. 67–71.

Hu,
S. Y.
, and
Chen,
L. Q.
, 2001, “A Phase-Field Model for Evolving Microstructures With Strong Elastic Inhomogeneity,” Acta Mater.,
49(11), pp. 1879–1890.

[CrossRef]
Yu,
P.
,
Hu,
S. Y.
,
Chen,
L. Q.
, and
Du,
Q.
, 2005, “An Iterative-Perturbation Scheme for Treating Inhomogeneous Elasticity in Phase-Field Models,” J. Comput. Phys.,
208(1), pp. 34–50.

Bhattacharyya,
S.
,
Heo,
T. W.
,
Chang,
K.
, and
Chen,
L. Q.
, 2012, “A Spectral Iterative Method for the Computation of Effective Properties of Elastically Inhomogeneous Polycrystals,” Commun. Comput. Phys.,
11(3), pp. 726–738.

Bhattacharyya,
S.
,
Heo,
T. W.
,
Chang,
K.
, and
Chen,
L. Q.
, 2011, “A Phase-Field Model of Stress Effect on Grain Boundary Migration,” Modell. Simul. Mater. Sci. Eng.,
19(3), pp. 1–17.

Moulinec,
H.
, and
Suquet,
P.
, 1998, “A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure,” Comput. Methods Appl. Mech. Eng.,
157(1–2), pp. 69–94.

Allen,
S. M.
, and
Cahn,
J. W.
, 1972, “Ground State Structures in Ordered Binary Alloys With Second Neighbor Interactions,” Acta Metall.,
20(3), pp. 423–433.

Tonks,
M. R.
,
Gaston,
D.
,
Millett,
P. C.
,
Andrs,
D.
, and
Talbot,
P.
, 2012, “An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations,” Comput. Mater. Sci.,
51(1), pp. 20–29.

Wang,
Y.
, and
Khachaturyan,
A. G.
, 1997, “Three-Dimensional Field Model and Computer Modeling of Martensitic Transformations,” Acta Mater.,
45(2), pp. 759–773.

Artemev,
A.
,
Jin,
Y.
, and
Khachaturyan,
A. G.
, 2001, “Three-Dimensional Phase Field Model of Proper Martensitic Transformation,” Acta Mater.,
49(7), pp. 1165–1177.

Smith,
C. S.
, 1952, “Grain Shapes and Other Metallurgical Applications of Topology,” Metal Interfaces,
ASM International,
Materials Park, OH.

Kamaya,
M.
,
Kawamura,
Y.
, and
Kitamura,
T.
, 2007, “Three-Dimensional Local Stress Analysis on Grain Boundaries in Polycrystalline Material,” Int. J. Solids Struct.,
44(10), pp. 3267–3277.

Sumigawa,
T.
,
Kitamura,
T.
, and
Ohishi,
K.
, 2004, “Slip Behaviour Near a Grain Boundary in High-Cycle Fatigue of Poly-Crystal Copper,” Fatigue Fract. Eng. Mater. Struct.,
27(6), pp. 495–503.