0
Research Papers

Experimental Investigation and Constitutive Modeling for Hot Deformation Behavior of 2219 Al-Alloy Microalloyed With Silver

[+] Author and Article Information
Purnendu Kumar Manda

Department of Mechanical Engineering,
Indian Institute of Technology Guwahati,
Guwahati 781039, India
e-mail: p.mandal@iitg.ernet.in

P. S. Robi

Department of Mechanical Engineering,
Indian Institute of Technology Guwahati,
Guwahati 781039, India
e-mail: psr@iitg.ernet.in

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received December 27, 2016; final manuscript received April 11, 2018; published online May 24, 2018. Editor: Mohammed Zikry.

J. Eng. Mater. Technol 140(4), 041005 (May 24, 2018) (11 pages) Paper No: MATS-16-1381; doi: 10.1115/1.4040099 History: Received December 27, 2016; Revised April 11, 2018

2219Al and 2219Al + 0.1 wt % Ag alloys were processed by casting route. The hot compression tests were carried out at constant true strain rates and temperatures in the range of 10−3 to 101 s−1 and 300–500 °C, respectively. Flow stress of the alloy decreases with the addition of silver. The flow stress of both alloys increases with the decrease in deformation temperature and the increase in strain rates. Constitutive models correlating the peak flow stress with deformation temperature and strain rates for the two alloys were developed using hyperbolic–sine relationship. The activation energy for hot deformation of 2219 Al alloy decreases with the addition of silver. Comparison of the predicted and experimental values of peak flow stress reveals that 92% of the data could be predicted within a deviation error of ±10% indicating good predictive capability for the developed constitutive relationships.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sukumaran, K. , Ravikumar, K. K. , Pillai, S. G. K. , Rajan, T. P. D. , Ravi, M. , Pillai, R. M. , and Pai, B. C. , 2008, “ Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite,” Mater. Sci. Eng.: A, 490(1–2), pp. 235–241. [CrossRef]
Li, H. , Huang, D. , Kang, W. , Liu, J. , Ou, Y. , and Li, D. , 2016, “ Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al–Cu–Li Alloy,” J. Mater. Sci. Technol., 32(10), pp. 1049–1053. [CrossRef]
An , L.-H. , Cai, Y. , Liu, W. , Yuan, S.-J. , Zhu, S.-Q. , and Meng, F.-C. , 2012, “ Effect of Pre-Deformation on Microstructure and Mechanical Properties of 2219 Aluminum Alloy Sheet by Thermomechanical Treatment,” Trans. Nonferrous Met. Soc. China, 22(Suppl. 2), pp. s370–s375. [CrossRef]
Wang, J. , Yi, D. , Su, X. , and Yin, F. , 2008, “ Influence of Deformation Ageing Treatment on Microstructure and Properties of Aluminum Alloy 2618,” Mater. Charact., 59(7), pp. 965–968. [CrossRef]
Li, H. , Li, Z. , Song, M. , Liang, X. , and Guo, F. , 2010, “ Hot Deformation Behavior and Microstructural Evolution of Ag-Containing 2519 Aluminum Alloy,” Mater. Des., 31(4), pp. 2171–2176. [CrossRef]
Hirosawa, S. , Sato, T. , Kamio, A. , and Flower, H. M. , 2000, “ Classification of the Role of Microalloying Elements in Phase Decomposition of Al Based Alloys,” Acta Mater., 48(8), pp. 1797–1806. [CrossRef]
Yu, K. , Li, W. , Li, S. , and Zhao, J. , 2004, “ Mechanical Properties and Microstructure of Aluminum Alloy 2618 With Al3(Sc, Zr) Phases,” Mater. Sci. Eng.: A, 368(1–2), pp. 88–93. [CrossRef]
Raju, P. N. , Rao, K. S. , Reddy, G. M. , Kamaraj, M. , and Rao, K. P. , 2007, “ Microstructure and High Temperature Stability of Age Hardenable AA2219 Aluminium Alloy Modified by Sc, Mg and Zr Additions,” Mater. Sci. Eng.: A, 464(1–2), pp. 192–201. [CrossRef]
Banerjee, S. , Robi, P. S. , Srinivasan, A. , and Lakavath, P. K. , 2010, “ Effect of Trace Additions of Sn on Microstructure and Mechanical Properties of Al–Cu–Mg Alloys,” Mater. Des., 31(8), pp. 4007–4015. [CrossRef]
Wang, G. , Sun, Q. , Shan, L. , Zhao, Z. , and Yan, L. , 2007, “ Influence of Indium Trace Addition on the Precipitation Behavior in a 357 Cast Aluminum Alloy,” J. Mater. Eng. Perform., 16(6), pp. 752–756. [CrossRef]
Dong, Y. , Zhang, C. , Zhao, G. , Guan, Y. , Gao, A. , and Sun, W. , 2016, “ Constitutive Equation and Processing Maps of an Al–Mg–Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles,” Mater. Des., 92, pp. 983–997. [CrossRef]
Shi, L. , Yang, H. , Guo, L. G. , and Zhang, J. , 2014, “ Constitutive Modeling of Deformation in High Temperature of a Forging 6005A Aluminum Alloy,” Mater. Des., 54, pp. 576–581. [CrossRef]
Chen, G. , Lin, F. , Yao, S. , Han, F. , Wei, B. , and Zhang, Y. , 2016, “ Constitutive Behavior of Aluminum Alloy in a Wide Temperature Range From Warm to Semi-Solid Regions,” J. Alloys Compd., 674, pp. 26–36. [CrossRef]
Shalbafi, M. , Roumina, R. , and Mahmudi, R. , 2017, “ Hot Deformation of the Extruded Mg–10Li–1Zn Alloy: Constitutive Analysis and Processing Maps,” J. Alloys Compd., 696, pp. 1269–1277. [CrossRef]
Wu, H. , Du, L. , and Liu, X. , 2011, “ Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel,” J. Mater. Sci. Technol., 27(12), pp. 1131–1138. [CrossRef]
Banerjee, S. , Robi, P. S. , Srinivasan, A. , and Kumar, L. P. , 2010, “ High Temperature Deformation Behavior of Al–Cu–Mg Alloys Micro-Alloyed With Sn,” Mater. Sci. Eng.: A, 527(10–11), pp. 2498–2503. [CrossRef]
Wang, G. , Xu, L. , Wang, Y. , Zheng, Z. , Cui, Y. , and Yang, R. , 2011, “ Processing Maps for Hot Working Behavior of a PM TiAl Alloy,” J. Mater. Sci. Technol., 27(10), pp. 893–898. [CrossRef]
Yang, Q.-Y. , Dong, Y. , Zhang, Z.-Q. , Cao, L.-F. , Wu, X.-D. , and Huang, G.-J. , Qing ., L. , 2016, “ Flow Behavior and Microstructure Evolution of 6A82 Aluminium Alloy With High Copper Content During Hot Compression Deformation at Elevated Temperatures,” Trans. Nonferrous Met. Soc. China, 26(3), pp. 649–657. [CrossRef]
Li, B. , Pan, Q. , and Yin, Z. , 2014, “ Characterization of Hot Deformation Behavior of as-Homogenized Al–Cu–Li–Sc–Zr Alloy Using Processing Maps,” Mater. Sci. Eng.: A, 614, pp. 199–206. [CrossRef]
Park, S. Y. , and Kim, W. J. , 2016, “ Difference in the Hot Compressive Behavior and Processing Maps Between the as-Cast and Homogenized Al–Zn–Mg–Cu (7075) Alloys,” J. Mater. Sci. Technol., 32(7), pp. 660–670. [CrossRef]
Hu, H. E. , Zhen, L. , Yang, L. , Shao, W. Z. , and Zhang, B. Y. , 2008, “ Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation,” Mater. Sci. Eng.: A, 488(1–2), pp. 64–71. [CrossRef]
Medina, S. F. , and Hernandez, C. A. , 1996, “ General Expression of the Zener–Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels,” Acta Mater., 44(1), pp. 137–148. [CrossRef]
Smith, T. J. , Sehitoglu, H. , Fleury, E. , Maier, H. J. , and Allison, J. , 1999, “ Modeling High-Temperature Stress-Strain Behavior of Cast Aluminum Alloys,” Metall. Mater. Trans. A, 30(1), pp. 133–146. [CrossRef]
Kaibyshev, R. , Sitdikov, O. , Mazurina, I. , and Lesuer, D. R. , 2002, “ Deformation Behavior of a 2219 Al Alloy,” Mater. Sci. Eng.: A, 334(1–2), pp. 104–113. [CrossRef]
Liu, W. , Zhao, H. , Li, D. , Zhang, Z. , Huang, G. , and Liu, Q. , 2014, “ Hot Deformation Behavior of AA7085 Aluminum Alloy During Isothermal Compression at Elevated Temperature,” Mater. Sci. Eng.: A, 596, pp. 176–182. [CrossRef]
Banerjee, S. , Robi, P. S. , and Srinivasan, A. , 2012, “ Prediction of Hot Deformation Behavior of Al–5.9% Cu–0.5% Mg Alloys With Trace Additions of Sn,” J. Mater. Sci., 47(2), pp. 929–948. [CrossRef]
McQueen, H. J. , and Ryan, N. D. , 2002, “ Constitutive Analysis in Hot Working,” Mater. Sci. Eng.: A, 322(1–2), pp. 43–63. [CrossRef]
Liu, X. Y. , Pan, Q. L. , He, Y. B. , Li, W. B. , Liang, W. J. , and Yin, Z. M. , 2009, “ Flow Behavior and Microstructural Evolution of Al–Cu–Mg–Ag Alloy During Hot Compression Deformation,” Mater. Sci. Eng.: A, 500(1–2), pp. 150–154. [CrossRef]
Shi, C. , Mao, W. , and Chen, X. G. , 2013, “ Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy,” Mater. Sci. Eng.: A, 571, pp. 83–91. [CrossRef]
Shi, C. , and Chen, X. G. , 2014, “ Effect of Zr Addition on Hot Deformation Behavior and Microstructural Evolution of AA7150 Aluminum Alloy,” Mater. Sci. Eng.: A, 596, pp. 183–193. [CrossRef]
Shi, C. , and Chen, X. G. , 2015, “ Effects of Zr and V Micro-Alloying on Activation Energy During Hot Deformation of 7150 Aluminum Alloys,” Light Metals 2015, pp. 163–167.
Ringer, S. P. , Hono, K. , Polmear, I. J. , and Sakurai, T. , 1996, “ Nucleation of Precipitates in Aged Al–Cu–Mg–(Ag) Alloys With High Cu:Mg Ratios,” Acta Mater., 44(5), pp. 1883–1898. [CrossRef]
Gang, C. , Wei, C. , Li, M. , Anzhen, G. , Juan, L. , Zhimin, Z. , and Shunqi, Z. , 2015, “ Strain-Compensated Arrhenius-Type Constitutive Model for Flow Behavior of Al-12Zn-2.4 Mg-1.2 Cu Alloy,” Rare Met. Mater. Eng., 44(9), pp. 2120–2125. [CrossRef]
Zhang, J. , Chen, B. , and Baoxiang, Z. , 2012, “ Effect of Initial Microstructure on the Hot Compression Deformation Behavior of a 2219 Alumnum Alloy,” Mater. Des., 34, pp. 15–21. [CrossRef]
Huang, X. , Zhang, H. , Han, Y. , Wu, W. , and Chen, J. , 2010, “ Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature,” Mater. Sci. Eng.: A, 527(3), pp. 485–490. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Stress–strain (σε) plots at constant strain rate of 10−2 s−1 and various temperatures for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 2

Stress–strain (σε) plots at 300 °C temperature and different strain rates for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 3

Stress–strain (σ–ε) plots at 500 °C temperature and different strain rates for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 4

Peak flow stress versus temperature plots for alloy-A and alloy-B

Grahic Jump Location
Fig. 5

Optical microstructure of alloy-A and alloy-B at various conditions: (a) and (b) homogenized condition; (c) and (d) strain rate 10−3 s−1 and 300 °C temperature; and (e) and (f) strain rate 101 s−1 and 300 °C temperature

Grahic Jump Location
Fig. 6

Plots of ln(ε˙) versus peak flow stress, σp, for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 7

Plots of ln(ε˙) versus ln(σp) for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 8

Plots of ln(ε˙) versus ln[sinh(ασ)] for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 9

Plots of ln[sinh(ασ)] versus 1000/T for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 10

Plots of n versus T for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 11

Plots of S versus ln(ε˙) for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 12

Evolution of Q value (kJ/mol) as a function of deformation temperature and strain rate for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 13

Activation energy versus temperature plots for alloy-A and alloy-B

Grahic Jump Location
Fig. 14

Plots of ln(Z) versus ln[sinh(ασ)] for (a) alloy-A and (b) alloy-B

Grahic Jump Location
Fig. 15

Plot of predicted flow stress versus experimental flow stress for (a) alloy-A and (b) alloy-B

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In