Research Papers

Production of Al Metal Matrix Composites Reinforced With Carbon Nanotubes by Two-Stage Melt-Based HPDC-CE Method

[+] Author and Article Information
Natalya Larianovsky, Vladimir Popov, Alexander Katz-Demyanetz, Alex Fleisher

Israel Institute of Metals (IIM),
Technion City,
Haifa 3200003, Israel

Douglas E. Meyers, Ray S. Chaudhuri

YTC America, Inc.,
3401 Calle Tecate,
Camarillo, CA 93012

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 17, 2018; final manuscript received May 24, 2018; published online July 5, 2018. Assoc. Editor: Vikas Tomar.

J. Eng. Mater. Technol 141(1), 011002 (Jul 05, 2018) (7 pages) Paper No: MATS-18-1015; doi: 10.1115/1.4040556 History: Received January 17, 2018; Revised May 24, 2018

Carbon nanotubes (CNTs) are well known as perfect reinforcement for high strength and lightweight composites due to their high specific strength, thermal, electrical, and mechanical characteristics. One of the important challenges is to obtain a homogeneous dispersion of CNTs in metal matrix, so development technologies for producing metal matrix composites (MMCs) is of great interest. Melting followed by solidification, may be successfully utilized for synthesizing CNT-reinforced aluminum-based MMCs. In this study, Al/CNT composites have been produced by direct injection of CNTs in pure aluminum using high-pressure die casting (HPDC) method. The as-produced billets were subjected to cyclic extrusion (CE) to refine CNT agglomerates and to increase CNT dispersion in aluminum. Current investigation demonstrates that more than 50% efficiency of combined HPDC-CE production method has been achieved. The resulting composites demonstrated improved mechanical properties.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Iijima, S. , Brabec, C. , Maiti, A. , and Bernholc, J. , 1996, J. Chem. Phys., 104(5), p. 2009.
Qianqian, L. , Viereckl, A. , Rottmair, C. A. , and Singer, R. F. , 2009, “ Improved Processing of Carbon Nanotube/Magnesium Alloy Composites,” Compos. Sci. Technol., 69(7–8), pp. 1193–1199.
Kuzumaki, T. , Ujiie, O. , Ichinose, H. , and Ito, K. , 2000, “ Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite,” Adv. Eng. Mater., 2(7), pp. 416–418.
Kuzumaki, T. , Miyazawa, K. , Ichinose, H. , and Ito, K. , 1998, “ Processing of Carbon Nanotubes Reinforced Aluminum Composite,” J. Mater. Res., 13(9), pp. 2445–2449.
Shadakshari, R. , Mahesha, K. , and Niranjan, H. B. , 2012, “ Carbon Nanotube Reinforced Aluminium Matrix Composites—A Review,” Int. J. Innovative Res. Sci., Eng. Technol., 1(2), pp. 206–213.
Esawi, A. M. K. , Morsi, K. , Sayed, A. , Taher, M. , and Lanka, S. , 2010, “ Effect of Carbon Nanotube (CNT) Content on the Mechanical Properties of CNT-Reinforced Aluminium Composites,” Compos. Sci. Technol., 70(16), pp. 2237–2241.
Ullbrand, J. M. , Córdoba, J. M. , Tamayo-Ariztondo, J. , Elizalde, M. R. , Nygren, M. , Molina-Aldareguia, J. M. , and Odén, M. , 2010, “ Thermomechanical Properties of Copper–Carbon Nanofiber Composites Prepared by Spark Plasma Sintering and Hot Pressing,” Compos. Sci. Technol., 70(16), pp. 2263–2268.
Dong, H. , Nam, D. H. , Kim, Y. K. , Cha, S. I. , and Hong, S. H. , 2012, “ Effect of CNTs on Precipitation Hardening Behavior of CNT/Al–Cu Composites,” Carbon, 50(13), pp. 4809–4814.
Rikhtegar, F. , Shabestari, S. G. , and Saghafian, H. , 2017, “ Microstructural Evaluation and Mechanical Properties of Al-CNT Nanocomposites Produced by Different Methods,” J. Alloys Compd., 723, pp. 633–641.
Trinh, P. V. , Luan, N. V. , Phuong, D. D. , Minh, P. N. , Weibel, A. , Mesquich, D. , and Laurent, C. , 2018, “ Microstructure, Microhardness and Thermal Expansion of CNT/Al Composites Prepared by Flake Powder Metallurgy,” Compos. Part A, 105, pp. 126–137.
Fan, G. , Jiang, Y. , Tan, Z. , Guo, O. , Xiong, D.-B. , Su, Y. , Lin, R. , Hu, L. , Li, Z. , and Zhang, D. , 2018, “ Enhanced Interfacial Bonding and Mechanical Properties in CNT/Al Composites Fabricated by Flake Powder Metallurgy,” Carbon, 130, pp. 333–339.
Xu, C. L. , Wei, B. Q. , Ma, R. Z. , Liang, J. , Ma, X. K. , and Wu, D. H. , 1999, “ Fabrication of Aluminum–Carbon Nanotube Composites and Their Electrical Properties,” Carbon, 37(5), pp. 855–858.
Daoush, W. M. , Lim, B. K. , Mo, C. B. , Nam, D. H. , and Hong, S. H. , 2009, “ Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process,” Mater. Sci. Eng. A, 513–514, pp. 247–253.
Feng, Y. , Yuan, H. L. , and Zhang, M. , 2005, “ Fabrication and Properties of Silver-Matrix Composites Reinforced by Carbon Nanotubes,” Mater. Charact., 55(3), pp. 211–218.
Yang, X. , Zou, T. , Chunsheng Shi, C. , Liu, E. , He, C. , and Zhao, N. , 2016, “ Effect of Carbon Nanotube (CNT) Content on the Properties of In-Situ Synthesis CNT Reinforced Al Composites,” Mater. Sci. Eng., A660, pp. 11–18.
George, R. , Kashyap, K. T. , Rahul, R. , and Yamdagni, S. , 2005, “ Strengthen in Carbon Nanotube/Aluminium (CNT/Al) Composites,” Scr. Mater, 53(10), pp. 1159–1163.
Mansoor, M. , and Shahid, M. , 2016, “ Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting,” J. Appl. Res. Technol., 14(4), pp. 215–224.
Peigney, A. , Rul, S. , Lef‘evre-Schlick, F. , and Laurent, C. , 2007, “Densification During Hot-Pressing of Carbon Nanotube Metal Magnesium Aluminate Spinel Nanocomposites,” J. Eur. Ceram. Soc., 27(5), pp. 2183–2193.
Goh, C. S. , Wei, J. , Lee, L. C. , and Gupta, M. , 2006, “Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique,” Nanotechnology, 17(1), pp. 7–12.
Esawi, A. , Morsi, K. , Sayed, A. , Abdel Gawad, A. , and Borah, P. , 2009, “Fabrication and Properties of Dispersed Carbon Nanotube Aluminum Composites,” Mater. Sci. Eng. A, 508(1–2), pp. 167–173.
Carreno-Morelli, E. , Yang, J. , Couteau, E. , Hernadi, K. , Seo, J. W. , Bonjour, C. , Forró, L. , and Schaller, R. , 2004, “ Carbon Nanotube / Magnesium Composites,” Phys. Status Solidi, 201(8), pp. R53–R55.
Laha, T. , Kuchibhatla, S. , Seal, S. , Li, W. , and Agarwa, A. , 2007, “Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocomposite,” Acta Mater., 55(3), pp. 1059–1066.
Deng, C. F. , Wang, D. Z. , Zhang, X. X. , and Li, A. B. , 2007, “Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites,” Mater. Sci. Eng. A, 444(1–2), pp. 138–145.
Bakshi, S. R. , Singh, V. , Seal, S. , and Agarwa, A. , “Aluminum Composite Reinforced With Multiwalled Carbon Nanotubes From Plasma Spraying of Spray Dried Powders,” Surf. Coat. Technol., 2009, 203(10–11), pp. 1544–1554.
Choi, H. J. , Kwon, G. B. , Lee, G. Y. , and Bae, D. H. , 2008, “Reinforcement With Carbon Nanotubes in Aluminum Matrix Composites,” Scr. Mater., 59(3), pp. 360–363.
P'rez-Bustamante, R. , Gomez-Esparza, C. D. , Estrada-Guel, I. , Miki-Yoshida, M. , Licea-Jim'nez, L. , P'rez-García, S. A. , and Martínez-Sánchez, R. , 2009, “Microstructural and Mechanical Characterization of Al–MWCNT Composites Produced by Mechanical Milling,” Mater. Sci. Eng. A, 502(1–2), pp. 159–163.
Kwon, H. , Estili, M. , Takagi, K. , Miyazaki, T. , and Kawasaki, A. , 2009, “Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites,” Carbon, 47(3), pp. 570–577.
Goh, C. S. , Wei, J. , Lee, L. C. , and Gupta, M. , 2006, “Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes,” Mater. Sci. Eng. A, 423(1–2), pp. 153–156.
Shimizu, Y. , Miki, S. , Soga, T. , and Itoh, I. , 2008, “Multi-Walled Carbon Nanotube-Reinforced Magnesium Alloy Composites,” Scr. Mater., 58(4), pp. 267–270.
Fleisher, A. , Katz-Demyanetz, A. , Popov, V. , Larianovsky, N. , Karni, N. , and Tal, Y. , 2015, “ Lead-Free Brass Made by Direct Injection of CNT into Shot-Sleeve of HPDC Machine,” Die Casting Eng., 9, pp. 16–21.


Grahic Jump Location
Fig. 1

HR-SEM-images of as-received MWCNTs at different magnifications: (a) 1 μm and (b) 200 nm

Grahic Jump Location
Fig. 2

Illustration of HPDC [23] process. On the figure: (1) shot piston and (2) molten aluminum.

Grahic Jump Location
Fig. 3

CNTs distribution in the ingot after HPDC (0.5 wt % CNT)

Grahic Jump Location
Fig. 4

Schematic illustration of the CE process, where 1—HPDC-ingot

Grahic Jump Location
Fig. 5

Schematic illustration of hot direct extrusion, where (1) initial ingot; (2) extruded bar; and (3) heating element

Grahic Jump Location
Fig. 6

Processing of Al-0.25 wt % CNT composite: (a) HPDC ingot, (b) material after extrusion, and (c) machined HPDC-CE sample for mechanical testing

Grahic Jump Location
Fig. 7

Optical microscopy of Al/0.5 wt % CNT composites

Grahic Jump Location
Fig. 8

Optic images of the Al-0.25 wt % CNT composite after CE

Grahic Jump Location
Fig. 9

Optic images of the Al-0.5 wt % CNT composite after CE

Grahic Jump Location
Fig. 10

HR-SEM-images of the Al-0.5 wt % CNT composites: (a) and (b) after three cycles of CE; (c) and (d) after six cycles of CE; and (e) and (f) after ten cycles of CE



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In