Research Papers

Investigation of Mechanical Properties of Mono- and Multi-layer Alumina and Ceria Films Using Finite Element Modeling and Nanoindentation Experiments

[+] Author and Article Information
Sabina Cherneva

Institute of Mechanics,
Bulgarian Academy of Sciences,
Acad. G. Bonchev str., Bl. 4,
Sofia 1113, Bulgaria
e-mail: sabina_cherneva@yahoo.com

Desislava Guergova

Institute of Physical Chemistry,
Bulgarian Academy of Sciences,
Acad. G. Bonchev str., Bl. 11,
Sofia 1113, Bulgaria
e-mail: dguergova@ipc.bas.bg

Roumen Iankov

Institute of Mechanics,
Bulgarian Academy of Sciences,
Acad. G. Bonchev str., Bl. 4,
Sofia 1113, Bulgaria
e-mail: iankovr@yahoo.com

Dimitar Stoychev

Institute of Physical Chemistry,
Bulgarian Academy of Sciences,
Acad. G. Bonchev str., Bl. 11,
Sofia 1113, Bulgaria
e-mail: stoychev@ipc.bas.bg

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 23, 2018; final manuscript received June 20, 2018; published online July 18, 2018. Assoc. Editor: Vadim V. Silberschmidt.

J. Eng. Mater. Technol 141(1), 011006 (Jul 18, 2018) (10 pages) Paper No: MATS-18-1024; doi: 10.1115/1.4040593 History: Received January 23, 2018; Revised June 20, 2018

Important from exploitation point of view mechanical properties of single-layer, double-layer, and mixed alumina and ceria films and their stainless steel (SS) substrate were investigated by means of nanoindentation experiments. As a result, we obtained the experimental load–displacement curves and calculated the indentation hardness (HIT) and indentation modulus (EIT), by means of Oliver and Pharr approximation method. Numerical simulations of the process of nanoindentation by means of finite element method were performed as well, in order to obtain more information about the plastic properties of the investigated films. The obtained results show that the mixed Al2O3+Ce2O3 film, obtained at dominant concentration of cerium ions in the working electrolyte, has the highest indentation hardness and modulus, followed by the single Ce2O3-CeO2 film, the mixed Al2O3+Ce2O3 film, obtained at dominant concentration of aluminum ions in the working electrolyte, the double Ce2O3-CeO2/Al2O3 layer, and single Al2O3 layer.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Mansfeld, M. , Wang, Y. , and Shin, H. , 1992, “ The Ce-Mo Process for the Development of a Stainless Aluminum,” Electrochim. Acta, 37(12), pp. 2277–2282. [CrossRef]
Bernal, S. , Botana, F. J. , Calvino, J. J. , Marcos, M. , Pérez-Omil, J. A. , and Vidal, H. , 1995, “ Lanthanide Salts as Alternative Corrosion Inhibitors,” J. Alloys Compd., 225(1–2), pp. 638–641. [CrossRef]
Hussey, R. J. , and Graham, M. J. , 1996, “ The Influence of Reactive-Element Coatings on the High-Temperature Oxidation of Pure-Cr and High-Cr-Content Alloys,” Oxid. Met., 45(3–4), pp. 349–374. [CrossRef]
Mansfeld, F. , Breslin, C. B. , Pardo, A. , and Perez, F. J. , 1997, “ Surface Modification of Stainless-Steels-Green Technology for Corrosion Protection,” Surf. Coat. Technol., 90(3), pp. 224–228. [CrossRef]
Montemor, M. F. , Simones, A. M. , and Ferreira, M. G. S. , 2002, “ Composition and Corrosion Behavior of Galvanized Steel Treated With Rare-Earth Salts: The Effect of the Cation,” Prog. Org. Coat, 44(2), pp. 111–120. [CrossRef]
Abreu, C. M. , Cristobal, M. J. , Novoa, X. R. , Pena, G. , Perez, M. C. , and Rodriguez, R. J. , 2002, “ Modifications of the Stainless Steels Passive Film Induced by Cerium Implantation,” Surf. Coat. Technol., 158–159, pp. 582–587. [CrossRef]
Fauvet, P. , Balbaud, F. , Robin, R. , Tran, Q.-T. , Mugnier, A. , and Espinoux, D. , 2008, “ Corroson Mechanisms of Austenitic Stainless Steels in Nitric Media Used in Reprocessing Plants,” J. Nucl. Mater., 375(1), pp. 52–64. [CrossRef]
Kain, V. , Khan, S. , Reddy, A. V. R. , and Wattal, P. K. , 2013, “ Corrosion of Non-Sensitized Austenitic Stainless Steels in Nitric Acid Environment: An Electrochemical Approach,” Adv. Mater. Res., 794, pp. 517–529. [CrossRef]
Stoyanova, E. , Nikolova, D. , Stoychev, D. , Stefanov, P. , and Marinova, T. , 2006, “ Effect of Al and Ce Oxide Layers Electrodeposited on OC4004 Stainless Steel on Its Corrosion Characteristics in Acid Media,” Corr. Sci., 48(12), pp. 4037–4052. [CrossRef]
Guergova, D. , Stoyanova, E. , Stoychev, D. , Atanasova, G. , Avramova, I. , and Stefanov, P. , 2008, “ Influence of Calcination of Stainless Steel OC404 Covered With Alumina or Ceria Carrier Layers on Their Passive State in Different Acid Media,” Bulg. Chem. Commun., 40(3), pp. 227–232.
Stoyanova, E. , Guergova, D. , Stoychev, D. , Avramova, I. , and Stefanov, P. , 2010, “ Passivity of OC404 Steel Modified Electrochemically With CeO2-Ce2O3 Layers in Sulfuric Acid Media,” Electrochim. Acta, 55(5), pp. 1725–1732. [CrossRef]
Guergova, D. , Stoyanova, E. , Stoychev, D. , Avramova, I. , Atanasova, G. , and Stefanov, P. , 2011, “ Corrosion Stability of Stainless Steel, Modified Electrochemically With Ce2O3-CeO2 Films, in 3.5% NaCl Media,” Bulg. Chem. Commun., 43(1), pp. 150–157 http://www.bcc.bas.bg/BCC_Volumes/Volume_43_Number_1_2011/Volume_43_Number_1_2011_PDF/2011-43-1_24.pdf.
Guergova, D. , Stoyanova, E. , Stoychev, D. , Avramova, I. , and Stefanov, P. , 2012, “ Investigation of the Inhibiting Effect of Cerium Ions on the Corrosion Behavior of OC404 Stainless Steel in Sulfuric Acid Medium,” Open Chem. Phys. J, 4 (1), pp. 8–17. [CrossRef]
Guergova, D. , Stoyanova, E. , Stoychev, D. , Avramova, I. , and Stefanov, P. , 2015, “ Self-Healing Effect of Ceria Electrodeposited Thin Films on Stainless Steel in Aggressive 0.5 Mol/L NaCl Aqueous Solution,” J. Rare Earths, 33(11), pp. 1212–1227. [CrossRef]
Stoychev, D. , 2013, “ Corrosion Protective Ability of Electrodeposited Ceria Layers,” J. Solid State Electrochem., 17(2), pp. 497–509. [CrossRef]
Avramova, I. , Stefanov, P. , Nicolova, D. , Stoychev, D. , and Marinova, T. , 2005, “ Characterization of Nanocomposite CeO2-Al2O3 Coatings Electrodeposited on Stainless Steel,” Comp. Sci. Technol., 65(11–12), pp. 1663–1667. [CrossRef]
Avramova, I. , Suzer, S. , Guergova, D. , Stoychev, D. , and Stefanov, P. , 2013, “ CeOx/Al2O3 Thin Films on Stainless Steel Substrate—Dynamical X-Ray Photoelectron Spectroscopy Investigations,” Thin Solid Films, 536, pp. 63–67. [CrossRef]
Guergova, D. , Stoyanova, E. , Avramova, I. , and Stoychev, D. , 2018, “ Electrochemical Deposition of Mixed Ce-Al Oxide Layers on Stainless Steel and Assessment of Their Corrosion-Protective Ability,” Rev. De Chimie (in press).
Guergova, D. , Stoyanova, E. , Avramova, I. , and Stoychev, D. , 2017, “ Electrochemical Deposition of Mixed Ce-Al Oxide Layers on Stainless Steel and Assessment of Their Corrosion-Protective Ability,” “ XII ECHEMS Meeting “Electrochemistry in Ingenious Molecules, Surfaces and Devices, Programme”-Book of Abstracts, Publisher XII ECHEMS, Milano Marittima, Italy, SURF P5, p. 116.
Nonneman, M. , 1990, “ New High-Performance Gas Flow Equalizing Metal Supports For Automotive Exhaust Gas Catalysts,” SAE Int. J. Fuels Lubr., 99(4), pp. 108–116 https://www.jstor.org/stable/44580374?seq=1#page_scan_tab_contents.
Lox, E. S. J. , and Engler, B. H. , 1997, “ Environmental Catalysis-Mobile Sources,” Handbook of Heterogeneous Catalysis, G. Ertl , H. Knözinger , and J. Weitkamp , eds., Vol. 4, Wiley-VCH, Weinheim, Germany, pp. 1559–1633. [CrossRef]
Yazawa, Y. , Yoshida, H. , Takagi, N. , Komai, S. , Satsuma, A. , and Hattori, T. , 1999, “ Acid Strenght of Support Materials as a Factor Controlling Oxidation State of Palladium Catalyst for Propane Combustion,” J. Catal., 187(1), pp. 15–23. [CrossRef]
Oliver, W. C. , and Pharr, G. M. , 1992, “ An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res, 7(6), pp. 1564–1583. [CrossRef]
Iankov, R. , Cherneva, S. , and Stoychev, D. , 2008, “ Investigation of Material Properties of Thin Copper Films Through Finite Element Modeling of Microindentation Test,” Appl. Surf. Sci., 254(17), pp. 5460–5469. [CrossRef]
Zamfirova, G. , Cherneva, S. , Gaydarov, V. , and Djourelov, N. , 2014, “ Nanocomposites Based on Epoxy Resin. Simulation of Microindentation Process,” Colloids Surf. A, 460, pp. 254–264. [CrossRef]
Kanchana, V. , Vaitheeswaran, G. , Svane, A. , and Delin, A. , 2006, “ First-Principles Study of Elastic Properties of CeO2, ThO2 and PoO2,” J. Phys.: Condens. Matter, 18(42), pp. 9615–9624. [CrossRef]
Chen, Y. J. , Sun, Y. , Liu, Y. Z. , and Cui, Z. W. , 2011, “ Molecular Dynamics (MD Simulation of Uniaxial Tension of Ceria and Gadolinia Doped Ceria (GDC),” Third International Conference on Heterogeneous Material Mechanics, Advances in Heterogeneous Material Mechanics, Shanghai, China, May 22–26, pp. 75–78.
Zhang, F. C. , Luo, H. H. , and Roberts, S. G. , 2007, “ Mechanical Properties and Microstructure of Al2O3/Mullite Composite,” J. Mater. Sci., 42(16), pp. 6798–6802. [CrossRef]
Nieh, T. G. , Wadsworth, J. , and Sherby, O. D. , 2005, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, UK. [PubMed] [PubMed]
Sekino, T. , and Niihara, K. , 1995, “ Microstructural Characteristics and Mechanical Properties for Al2O3/Metal Nanocomposites,” Nano Structured Mater., 6(5–8), pp. 663–666. [CrossRef]
Nikolova, D. , Stoyanova, E. , Stoychev, D. , Stefanov, P. , and Marinowa, T. , 2006, “ Anodic Behavior of Stainless Steel Covered With an Electrochemically Deposited Ce2O3–CeO2 Film,” Surf. Coat. Technol., 201(3–4), pp. 1559–1567. [CrossRef]
Valov, I. , Guergova, D. , Stoychev, D. , et al. .2011, “ Kinetics Studies on the Electrochemical Deposition of Ce3+/Ce4+ Oxides,” Chapter No17 in the Book “Nanotechnological Bases for Advanced Sensors,” NATO Science for Peace and Security Series-B: Physics and Biophysics, J. Reithmaier , ed., Springer, The Netherlands, pp. 167–172. [CrossRef]
Stoychev, D. , Stefanov, P. , Nikolova, D. , Aleksandrova, A. , Atanasova, G. , and Marinova, T. , 2004, “ Preparation of Al2O3 Thin Films on Stainless Steel by Electrochemical Deposition,” Surf. Coat. Technol., 180–181, pp. 441–445. [CrossRef]
Wheeler, D. W. , Zekonyte, J. , and Wood, R. J. K. , 2013, “ Mechanical Properties of Cerium and a Cerium–5 Wt% Lanthanum Alloy by Nanoindentation and Ultrasonic Velocity Measurements,” Mater. Sci. Eng. A, 578, pp. 294–302. [CrossRef]
Yordanov, M. , Chobanov, P. , Stoyanova, E. , Stoychev, D. , Cherneva, S. , and Iankov, R. , 2010, Influence of the Conditions of Deposition on Mechanical Properties of Anodically Formed Al2O3 Layers on Al 1050, Vol. 1, Machine-building and Mechanics, BulKToMM Publishing House, Varna, Bulgaria, pp. 81–85.
Datcheva, M. , Cherneva, S. , Stoychev, D. , Iankov, R. , and Stoycheva, M. , 2011, “ Determination of anodized aluminum material Characteristics by Means of Nanoindentation Measurements,” Mater. Sci. Appl., 2(10), pp. 1452–1464.
Burroughs, P. , Hamnett, A. , Orchard, A. F. , and Thornton, G. , 1976, “ Satellite Structure in X-Ray Photoelectron Spectra of Some Binary and Mixed Oxides of Lanthanum and Cerium,” J. Chem. Soc., Dalton Trans., 17(17), pp. 1686–1698. [CrossRef]
Cherneva, S. , Stoychev, D. , and Iankov, R. , 2012, “ Measuring of Mechanical Properties of Electrochemically Deposited ZrO2, Ce2O3-CeO2 and La2O3 Films by Nanoindentation,” Chemické Listy, 106(S3), pp. s438–s441.


Grahic Jump Location
Fig. 1

Cross section of the system II (CeO2)x(Al2O3)1-x/SS, showed the thickness, structure, distribution of the pyramidal-like CeO2 and Al2O3 agglomerates, their distribution and disposition (visible in BEC mode), and absent of porosity in the layer

Grahic Jump Location
Fig. 2

Scheme of the boundary value problem for substrate and thin layers

Grahic Jump Location
Fig. 3

The finite element mesh for the two-dimensional (2D) model around the indenter for investigated single-layer films

Grahic Jump Location
Fig. 4

The finite element mesh for the 2D model around the indenter for investigated double-layer films

Grahic Jump Location
Fig. 5

Scanning electron microscope microphotographs of: (a) surface of SS substrate, after polishing, (b) surface of Ce2O3-CeO2/SS system, (c) surface of Al2O3/SS system, (d) surface of the bi-layer Ce2O3-CeO2/Al2O3 film of the system Ce2O3-CeO2/Al2O3/SS, (e) surface of mixed I (CeO2)x(Al2O3)1-x film in the system I (CeO2)x(Al2O3)1-x/SS, and (f) surface of mixed II (CeO2)x(Al2O3)1-x film in the system II (CeO2)x(Al2O3)1-x/SS; (the left part of micrographs shows BEI image and the right part—SEI image)

Grahic Jump Location
Fig. 6

(a) Comparison of indentation hardness of investigated films and (b) Comparison of indentation modulus of investigated films. The error bars present % coefficient of variation of measured indentation hardness and indentation modulus.

Grahic Jump Location
Fig. 7

Comparison between experimental and numerical load–displacement curves for (a) 400 nm Ce2O3-CeO2 film, (b) 3 μm Al2O3 film, (c) 1.1 μm Ce2O3-CeO2/2 μm Al2O3 bi-layer film, (d) 4 μm mixed I (CeO2)x(Al2O3)1-x film, and (e) 5 μm mixed II (CeO2)x(Al2O3)1-x film

Grahic Jump Location
Fig. 8

Comparison of yield strength of investigated films. The error bars present the standard deviation.

Grahic Jump Location
Fig. 9

Distribution of equivalent von Mises stress and plastic strain in 400 nm Ce2O3-CeO2 film (a), (b); 3 μm Al2O3 (c), (d); 1.1 μm Ce2O3-CeO2/ 2 μm Al2O3 bi-layer film (e), (f); 4 μm mixed I (CeO2)x(Al2O3)1-x film (g, h); 5 μm mixed II (CeO2)x(Al2O3) 1-x film (i, j)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In