Equations of rigid-body mechanics provide a means to predict the post-collision behavior without recourse to highly complex, detailed analysis of deformations during contact. Before the prediction can be completed, the coefficient of restitution, which relates the rebound velocity to the incident velocity, must be estimated properly. The coefficient of restitution depends on the surface topography in addition to the material properties and incident velocity. Recent investigations showed that surface topography can be characterized properly by fractal models. This paper proposes a normal contact model for a fractal surface in contact with a rigid smooth half-space. The fractal surface is constructed based on the Cantor set and composed of elastic-perfectly plastic material. Asymptotic continuous expressions for the load-displacement relations during loading and unloading are derived. Based on these results, we study the effects of surface roughness, material properties and incident velocity on the coefficient of restitution.

1.
Tabor, D., 1951, The Hardness of Metals, Oxford University Press, London.
2.
Goldsmith, W., 1960, Impact, Arnold, London.
3.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
4.
Ling
,
F. F.
,
1958
, “
On Asperity Distributions of Metallic Surface
,”
J. Appl. Phys.
,
29
, pp.
1168
1174
.
5.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Tribol.
,
93
, pp.
398
407
.
6.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
The Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.
7.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
A316
, pp.
97
121
.
8.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
, pp.
87
111
.
9.
Yamada
,
K.
,
Takeda
,
N.
,
Kagami
,
J.
, and
Naoi
,
T.
,
1978
, “
Mechanisms of Elastic Contact and Friction Between Rough Surfaces
,”
Wear
,
48
, pp.
15
34
.
10.
Bhushan
,
B.
,
1984
, “
Analysis of the Real Area of Contact Between a Polymeric Magnetic Medium and a Rigid Surface
,”
ASME J. Tribol.
,
106
, pp.
26
34
.
11.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Body
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
13.
Chang
,
W.-R.
, and
Ling
,
F. F.
,
1992
, “
Normal Impact Model of Rough Surfaces
,”
ASME J. Tribol.
,
114
, pp.
439
447
.
14.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Microgeometry of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
409
418
.
15.
Greenwood
,
J. A.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
,
A393
, pp.
133
157
.
16.
Ling
,
F. F.
,
1989
, “
The Possible Role of Fractal Geometry in Tribology
,”
Tribol. Trans.
,
32
, pp.
497
505
.
17.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
, pp.
205
216
.
18.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York.
19.
Kaplan
,
T.
, and
Gray
,
L. J.
,
1985
, “
Effect of Disorder on a Fractal Model for the AC Response of a Rough Interface
,”
Phys. Rev. B
,
32
, pp.
7360
7366
.
20.
Church
,
E. L.
,
1988
, “
Fractal Surface Finish
,”
Appl. Opt.
,
27
, pp.
1518
1526
.
21.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
22.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
23.
Borodich
,
F. M.
, and
Mosolov
,
A. B.
,
1992
, “
Fractal Roughness in Contact Problems
,”
J. Appl. Math. Mech.
,
56
, pp.
681
690
.
24.
Warren
,
T. L.
,
Majumdar
,
A.
, and
Krajcinovic
,
D.
,
1996
, “
A Fractal Model for the Rigid-Perfectly Plastic Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
63
, pp.
47
54
.
25.
Cook, R. D., and Young, W. C., 1985, Advanced Mechanics of Materials, Macmillan, New York.
26.
Bhattacharya
,
A. K.
, and
Nix
,
W. D.
,
1988
, “
Finite Element Simulation of Indentation Experiments
,”
Int. J. Solids Struct.
,
24
, pp.
881
891
.
You do not currently have access to this content.