This work tackles the problem of global identifiability of an undamped, shear-type, degrees of freedom linear structural system under forced excitation without any prior knowledge of its mass or stiffness distributions. Three actuator/sensor schemes are presented, which guarantee the existence of only one solution for the mass and stiffness identification problem while requiring a minimum amount of instrumentation (only 1 actuator and 1 or 2 sensors). Through a counterexample for a 3DOF system it is also shown that fewer measurements than those suggested result invariably in non-unique solutions.
Issue Section:
Additional Technical Papers
1.
Nguyen
, V. V.
, and Wood
, E. F.
, 1982, “Review and Unification of Linear Identifiability Concepts
,” SIAM Rev.
0036-1445, 24
, pp. 34
–51
.2.
Walter
, E.
, 1987, Identifiability of Parametric Models
, 1st ed., Pergamon Press
, New York.3.
Katafygiotis
, L. S.
, and Beck
, J. L.
, 1990, “Uniqueness in Structural System Identification
,” Proceedings of the U. S. National Workshop on Structural Control Research
, pp. 136
–140
.4.
Ljung
, L.
, and Glad
, T.
, 1994, “On Global Identifiability for Arbitrary Model Parametrizations
,” Automatica
0005-1098, 30
, pp. 265
–276
.5.
Udwadia
, F. E.
, and Sharma
, D. K.
, 1978, “Some Uniqueness Results Related to Building Structural Identification
,” SIAM J. Appl. Math.
0036-1399, 34
, pp. 104
–118
.6.
Udwadia
, F. E.
, Sharma
, D. K.
, and Shah
, P. C.
, 1978, “Uniqueness of Damping and Stiffness Distributions in the Identification of Soil and Structural Systems
,” J. Appl. Mech.
0021-8936, 45
, pp. 181
–187
.7.
Koh
, C. G.
, Hong
, B.
, and Liaw
, C.-Y.
, 2000, “Parameter Identification of Large Structural Systems in Time Domain
,” J. Struct. Eng.
0733-9445, 126
, pp. 957
–963
.8.
Chou
, J.-H.
, and Ghaboussi
, J.
, 2001, “Genetic Algorithm in Structural Damage Detection
,” Comput. Struct.
0045-7949, 79
, pp. 1335
–1353
.9.
Franco
, G.
, Betti
, R.
, and Lus
, H.
, 2004, “Identification of Structural Systems Using in Evolutionary Strategy
,” ASCE J. Eng. Mech.
0733-9399, 130
(10
), pp. 1125
–1139
.10.
Wilkinson
, J. H.
, 1965, The Algebraic Eigenvalue Problem
, 1st ed., Oxford University Press
, New York.11.
Friedberg
, S. H.
, Insel
A. J.
, and Spence
, L. E.
, 1979, Linear Algebra
, 1st ed., Prentice-Hall Inc.
, New York.12.
Salmon
, G.
, 1964, Lessons Introductory to the Modern Higher Algebra
, 1st ed., Chelsea Publishing Co.
, New York.13.
Raghavan
, M.
, and Roth
, B.
, 1995, “Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanism and Robot Manipulators
,” ASME J. Mech. Des.
1050-0472, 117
, pp. 71
–79
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.