This work tackles the problem of global identifiability of an undamped, shear-type, N degrees of freedom linear structural system under forced excitation without any prior knowledge of its mass or stiffness distributions. Three actuator/sensor schemes are presented, which guarantee the existence of only one solution for the mass and stiffness identification problem while requiring a minimum amount of instrumentation (only 1 actuator and 1 or 2 sensors). Through a counterexample for a 3DOF system it is also shown that fewer measurements than those suggested result invariably in non-unique solutions.

1.
Nguyen
,
V. V.
, and
Wood
,
E. F.
, 1982, “
Review and Unification of Linear Identifiability Concepts
,”
SIAM Rev.
0036-1445,
24
, pp.
34
51
.
2.
Walter
,
E.
, 1987,
Identifiability of Parametric Models
, 1st ed.,
Pergamon Press
, New York.
3.
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
, 1990, “
Uniqueness in Structural System Identification
,”
Proceedings of the U. S. National Workshop on Structural Control Research
, pp.
136
140
.
4.
Ljung
,
L.
, and
Glad
,
T.
, 1994, “
On Global Identifiability for Arbitrary Model Parametrizations
,”
Automatica
0005-1098,
30
, pp.
265
276
.
5.
Udwadia
,
F. E.
, and
Sharma
,
D. K.
, 1978, “
Some Uniqueness Results Related to Building Structural Identification
,”
SIAM J. Appl. Math.
0036-1399,
34
, pp.
104
118
.
6.
Udwadia
,
F. E.
,
Sharma
,
D. K.
, and
Shah
,
P. C.
, 1978, “
Uniqueness of Damping and Stiffness Distributions in the Identification of Soil and Structural Systems
,”
J. Appl. Mech.
0021-8936,
45
, pp.
181
187
.
7.
Koh
,
C. G.
,
Hong
,
B.
, and
Liaw
,
C.-Y.
, 2000, “
Parameter Identification of Large Structural Systems in Time Domain
,”
J. Struct. Eng.
0733-9445,
126
, pp.
957
963
.
8.
Chou
,
J.-H.
, and
Ghaboussi
,
J.
, 2001, “
Genetic Algorithm in Structural Damage Detection
,”
Comput. Struct.
0045-7949,
79
, pp.
1335
1353
.
9.
Franco
,
G.
,
Betti
,
R.
, and
Lus
,
H.
, 2004, “
Identification of Structural Systems Using in Evolutionary Strategy
,” ASCE
J. Eng. Mech.
0733-9399,
130
(
10
), pp.
1125
1139
.
10.
Wilkinson
,
J. H.
, 1965,
The Algebraic Eigenvalue Problem
, 1st ed.,
Oxford University Press
, New York.
11.
Friedberg
,
S. H.
,
Insel
A. J.
, and
Spence
,
L. E.
, 1979,
Linear Algebra
, 1st ed.,
Prentice-Hall Inc.
, New York.
12.
Salmon
,
G.
, 1964,
Lessons Introductory to the Modern Higher Algebra
, 1st ed.,
Chelsea Publishing Co.
, New York.
13.
Raghavan
,
M.
, and
Roth
,
B.
, 1995, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanism and Robot Manipulators
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
71
79
.
You do not currently have access to this content.