In this paper, consideration is given to the dynamic response of a rotating cantilever twisted and inclined airfoil blade subjected to contact loads at the free end. Starting with the basic geometrical relations and energy formulation for a rotating Timoshenko beam constrained at the hub in a centrifugal force field, a system of coupled partial differential equations are derived for the combined axial, lateral and twisting motions which includes the transverse shear, rotary inertia, and Coriolis effects, as well. In the mathematical formulation, the torsion of the thin airfoil also considers a very general case of shear center not being coincident with the CG (center of gravity) of the cross section, which allows the equations to be used also for analyzing eccentric tip-rub loading of the blade. Equations are presented in terms of axial load along the longitudinal direction of the beam which enables us to solve the dynamic pulse buckling due to the tip being loaded in the longitudinal as well as transverse directions of the beam column. The Rayleigh–Ritz method is used to convert the set of four coupled-partial differential equations into equivalent classical mass, stiffness, damping, and gyroscopic matrices. Natural frequencies are computed for beams with varying “slenderness ratio” and “aspect ratio” as well as “twist angles.” Dynamical equations account for the full coupling effect of the transverse flexural motion of the beam with the torsional and axial motions due to pretwist in the airfoil. Some transient dynamic responses of a rotating beam repeatedly rubbing against the outer casing is shown for a typical airfoil with and without a pretwist.

1.
Carnegie
,
W.
, and
Dawson
,
B.
, 1971, “
Vibration Characteristics of Pre-Twisted Blades of Asymmetrical Aerofoil Cross-Section
,”
Aeronaut. Q.
0001-9259,
1
(
3
), pp.
257
273
.
2.
Fu
,
C. C.
, 1974, “
Computer Analysis of a Rotating Axial Turbo Machine Blade in Coupled Bending-Bending-Torsion Vibrations
,”
Int. J. Numer. Methods Eng.
0029-5981,
8
, pp.
569
588
.
3.
Feldt
,
W. T.
, and
Hermann
,
G.
, 1974, “
Bending-Torsional Flutter of a Cantilevered Wing Containing a Tip Mass and Subjected to a Transverse Follower Force
,”
J. Franklin Inst.
0016-0032,
297
, pp.
467
478
.
4.
Pigot
,
R.
, and
Abel
,
J. M.
, 1975, “
Vibrations and Stability of Turbine Blades at Stall
,”
ASME J. Eng. Power
0022-0825,
96
, pp.
201
208
.
5.
Lin
,
C. Y.
, and
Chen
,
L. W.
, 2003, “
Dynamic Stability of Rotating Pre-Twisted Blades with a Constrained Damping Layer
,”
Compos. Struct.
0263-8223,
61
, pp.
235
245
.
6.
Coller
,
B. D.
, and
Chamara
,
P. A.
, 2004, “
Structural Non-Linearities and the Nature of the Classic Flutter Instability
,”
J. Sound Vib.
0022-460X,
277
(
4–5
), pp.
711
739
.
7.
Chen
,
L. W.
, and
Peng
,
W. K.
, 1995, “
Dynamic Stability of Rotating Blades With Geometric Non-Linearity
,”
J. Sound Vib.
0022-460X,
187
(
3
), pp.
421
433
.
8.
Hodges
,
D. H.
, 2001, “
Lateral-Torsional Flutter of a Deep Cantilever Loaded by a Lateral Follower Force at the Tip
,”
J. Sound Vib.
0022-460X,
247
(
1
), pp.
175
183
.
9.
Sinha
,
S. K.
, 2005, “
Non-Linear Dynamic Response of a Rotating Radial Timoshenko Beam With Periodic Pulse Loading at the Free-End
,”
Int. J. Non-Linear Mech.
0020-7462,
40
(
1
), pp.
113
149
.
10.
Chen
,
C. K.
, and
Ho
,
S. H.
, 1999, “
Transverse Vibration of a Rotating Twisted Timoshenko Beams Under Axial Loading Using Differential Transform
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
1339
1356
.
11.
Timoshenko
,
S.
,
Young
,
D. H.
, and
Weaver
,
W.
, 1974,
Vibration Problems in Engineering
, 4th ed.,
Wiley
, New York, pp.
432
434
.
12.
Leissa
,
A.
, and
Jacob
,
K. I.
, 1986, “
Three-Dimensional Vibrations of Twisted Cantilevered Parallelepipeds
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
614
618
.
13.
Rosen
,
A.
, 1991, “
Structural and Dynamic Behavior of Pretwisted Rods and Beams
,”
Appl. Mech. Rev.
0003-6900,
44
, pp.
483
515
.
14.
Lin
,
S. M.
,
Wang
,
W. R.
, and
Lee
,
S. Y.
, 2001, “
The Dynamic Analysis of Nonuniformly Pre-Twisted Timoshenko Beam With Elastic Boundary Conditions
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2385
2405
.
15.
Petrov
,
E.
, and
Geradin
,
M.
, 1998, “
Finite Element Theory for Curved and Twisted Beams Based on Exact Solutions for Three Dimensional Solids. Part 1: Beam Concept and Geometrically Exact Nonlinear Formulation, Part 2: Anisotropic and Advanced Beam Models
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
165
, pp.
43
127
.
16.
Tang
,
S.
, and
Yu
,
A.
, 2004, “
Generalized Variational Principle on Nonlinear Theory of Naturally Curved and Twisted Beams
,”
Appl. Math. Comput.
0096-3003,
153
, pp.
275
288
.
17.
Lee
,
S. Y.
, and
Lin
,
S. M.
, 1994, “
Bending Vibrations of a Rotating Nonuniform Timoshenko Beam With an Elastically Restrained Root
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
949
955
.
18.
Oguamanam
,
D. C. D.
, and
Heppler
,
G. R.
, 1998, “
Geometric Stiffening of Timoshenko Beams
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
923
929
.
19.
Lin
,
S. M.
, 1999, “
Dynamic Analysis of Rotating Nonuniform Timoshenko Beams With an Elastically Restrained Root
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
742
748
.
20.
Yardimoglu
,
B.
, and
Yildirim
,
T.
, 2004, “
Finite Element Model for Vibration Analysis of Pre-Twisted Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
273
, pp.
741
754
.
21.
Banerjee
,
J. R.
, 2004, “
Development of an Exact Dynamic Stiffness Matrix for Free Vibration Analysis of a Twisted Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
270
, pp.
379
401
.
22.
Hu
,
X. X.
,
Sakiyama
,
T.
,
Matsuda
,
H.
, and
Morita
,
C.
, 2004, “
Fundamental Vibration of Rotating Cantilever Blades With Pre-Twist
,”
J. Sound Vib.
0022-460X,
271
, pp.
47
66
.
23.
Chen
,
W. R.
, and
Keer
,
L. M.
, 1993, “
Transverse Vibration of a Rotating Twisted Timoshenko Beam Under Axial Loading
,”
ASME J. Vibr. Acoust.
0739-3717,
115
, pp.
285
294
.
24.
Lee
,
H. P.
, 1994, “
Buckling and Dynamic Stability of Spinning Pre-Twisted Beams Under Compressive Axial Loads
,”
Int. J. Mech. Sci.
0020-7403,
36
(
11
), pp.
1011
1026
.
25.
Liao
,
C. L.
, and
Huang
,
B. W.
, 1995, “
Parametric Instability of a Spinning Pretwisted Beam Under Periodic Axial Force
,”
Int. J. Mech. Sci.
0020-7403,
37
(
4
), pp.
423
439
.
26.
Sakar
,
G.
, and
Sabuncu
,
M.
, 2004, “
Buckling and Dynamic Stability of a Rotating Pretwisted Asymmetric Cross-Section Blade Subjected to an Axial Periodic Load
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1399
1415
.
27.
Yang
,
S. M.
, and
Tsao
,
S. M.
, 1997, “
Dynamics of a Pretwisted Blade Under Nonconstant Rotating Speed
,”
Comput. Struct.
0045-7949,
62
(
4
), pp.
643
651
.
28.
Temel
,
B.
, and
Calim
,
F. F.
, 2003, “
Forced Vibration of Cylindrical Helical Rods Subjected to Impulsive Loads
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
281
291
.
29.
Temel
,
B.
, 2004, “
Transient Analysis of Viscoelastic Helical Rods Subject to Time-Dependent Loads
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1605
1624
.
30.
Turhan
,
O.
, and
Bulut
,
G.
, 2005, “
Dynamic Stability of Rotating Blades (Beams) Eccentrically Clamped to a Shaft With Fluctuating Speed
,”
J. Sound Vib.
0022-460X,
280
(
3–5
), pp.
945
964
.
31.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
, New York, pp.
307
309
.
32.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
, New York, pp.
212
250
.
33.
Harris
,
C. M.
, and
Crede
,
C. E.
, 1976,
Shock and Vibration Handbook
, 2nd ed.,
McGraw-Hill
, New York, pp.
7
14
.
34.
Padova
,
S.
,
Barton
,
J.
,
Dunn
,
M. G.
,
Manwaring
,
S.
,
Young
,
G.
,
Adams
,
M.
, Jr.
, and
Adams
,
M.
, 2004, “
Development of an Experimental Capability to Produce Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
Proceedings of IGTI: ASME/IGTI Turbo Expo 2004
, Vienna, Austria, June 14–17, Paper No. GT2004-53322.
You do not currently have access to this content.