Research Papers

Micromechanical Finite Element Analysis of the Effects of Martensite Particle Size and Ferrite Grain Boundaries on the Overall Mechanical Behavior of Dual Phase Steel

[+] Author and Article Information
Najmul H. Abid

Department of Mechanical Engineering,
McGill University,
Montreal, QC H3A 0C3, Canada

Rashid K. Abu Al-Rub

Institute Center for Energy,
Mechanical and Materials
Engineering Department,
Masdar Institute of Science and Technology,
Abu Dhabi 54224, UAE;
Mechanical Engineering Department,
Khalifa University of Science and Technology,
Abu Dhabi 54224, UAE
e-mails: rabualrub@masdar.ac.ae;

Anthony N. Palazotto

Department of Aeronautics and Astronautics,
Air Force Institute of Technology,
WPAFB, OH 45433-7765

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received October 17, 2015; final manuscript received March 23, 2017; published online May 25, 2017. Assoc. Editor: Mohammed Zikry.

J. Eng. Mater. Technol 139(4), 041006 (May 25, 2017) (8 pages) Paper No: MATS-15-1262; doi: 10.1115/1.4036687 History: Received October 17, 2015; Revised March 23, 2017

This paper focuses on micromechanical finite element (FE) modeling of the effects of size and morphology (particularly elongation or aspect ratio (AR) along the loading direction) of martensite particles and the ferrite grains on the overall mechanical behavior of dual-phase (DP) steels. To capture the size-effect of the martensite particles and ferrite grains, the core and mantle approach is adapted in which a thin interphase of geometrically necessary dislocations (GNDs) is embedded at the martensite–ferrite boundaries. It is shown that as the martensite particles size decreases or their aspect ratio increases, both the strength and ductility of DP steel increase simultaneously. On the other hand, as the ferrite grain size decreases or its aspect ratio increases, the overall strength increases on the expense of the ductility. The conclusions from this study can be used in guiding the microstructural design of DP steels.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Rashid, M. , 1981, “ Dual Phase Steels,” Annu. Rev. Mater. Sci., 11(1), pp. 245–266. [CrossRef]
Pierman, A. P. , Bouaziz, O. , Pardoen, T. , Jacques, P. J. , and Brassart, L. , 2014, “ The Influence of Microstructure and Composition on the Plastic Behaviour of Dual-Phase Steels,” Acta Mater., 73, pp. 298–311. [CrossRef]
Davies, R. G. , 1978, “ Influence of Martensite Composition and Content on the Properties of Dual Phase Steels,” Metall. Trans. A, 9(5), pp. 671–679. [CrossRef]
Kim, N. J. , and Thomas, G. , 1981, “ Effects of Morphology on the Mechanical Behavior of a Dual Phase Fe/2Si/0.1C Steel,” Metall. Trans. A, 12(3), pp. 483–489. [CrossRef]
Park, K. , Nishiyama, M. , Nakada, N. , Tsuchiyama, T. , and Takaki, S. , 2014, “ Effect of the Martensite Distribution on the Strain Hardening and Ductile Fracture Behaviors in Dual-Phase Steel,” Mater. Sci. Eng. A, 604, pp. 135–141. [CrossRef]
Kim, N. J. , Nakagawa, A. H. , and Nakagawa, A. H. , 1986, “ Effective Grain Size of Dual-Phase Steel,” Mater. Sci. Eng., 83(1), pp. 145–149. [CrossRef]
Erdogan, M. , 2002, “ The Effect of New Ferrite Content on the Tensile Fracture Behaviour of Dual Phase Steels,” J. Mater. Sci., 37(17), pp. 3623–3630. [CrossRef]
Erdogan, M. , and Priestner, R. , 2002, “ Effect of Martensite Content, Its Dispersion, and Epitaxial Ferrite Content on Bauschinger Behaviour of Dual Phase Steel,” Mater. Sci. Technol., 18(4), pp. 369–376. [CrossRef]
Al-Abbasi, F. M. , and Nemes, J. A. , 2003, “ Micromechanical Modeling of Dual Phase Steels,” Int. J. Mech. Sci., 45(9), pp. 1449–1465. [CrossRef]
Al-Abbasi, F. M. , and Nemes, J. A. , 2003, “ Micromechanical Modeling of the Effect of Particle Size Difference in Dual Phase Steels,” Int. J. Solids Struct., 40(13–14), pp. 3379–3391. [CrossRef]
Sun, X. , Choi, K. S. , Liu, W. N. , and Khaleel, M. A. , 2009, “ Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization,” Int. J. Plast., 25(10), pp. 1888–1909. [CrossRef]
Sun, X. , Choi, K. S. , Soulami, A. , Liu, W. N. , and Khaleel, M. A. , 2009, “ On Key Factors Influencing Ductile Fractures of Dual Phase (DP) Steels,” Mater. Sci. Eng. A, 526(1–2), pp. 140–149. [CrossRef]
Choi, K. S. , Liu, W. N. , Sun, X. , Khaleel, M. A. , and Fekete, J. R. , 2009, “ Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels,” ASME J. Eng. Mater. Technol., 131(4), p. 041205. [CrossRef]
Choi, K. S. , Liu, W. N. , Sun, X. , and Khaleel, M. A. , 2009, “ Influence of Martensite Mechanical Properties on Failure Mode and Ductility of Dual-Phase Steels,” Metall. Mater. Trans. A, 40(4), pp. 796–809. [CrossRef]
Katani, S. , Ziaei-Rad, S. , Nouri, N. , Saeidi, N. , Kadkhodapour, J. , Torabian, N. , and Schmauder, S. , 2013, “ Microstructure Modelling of Dual-Phase Steel Using SEM Micrographs and Voronoi Polycrystal Models,” Metallogr. Microstruct. Anal., 2(3), pp. 156–169. [CrossRef]
Kim, J. H. , Lee, M. G. , Kim, D. , Matlock, D. K. , and Wagoner, R. H. , 2010, “ Hole-Expansion Formability of Dual-Phase Steels Using Representative Volume Element Approach With Boundary-Smoothing Technique,” Mater. Sci. Eng. A, 527(27–28), pp. 7353–7363. [CrossRef]
Marvi-Mashhadi, M. , Mazinani, M. , and Rezaee-Bazzaz, A. , 2012, “ FEM Modeling of the Flow Curves and Failure Modes of Dual Phase Steels With Different Martensite Volume Fractions Using Actual Microstructure as the Representative Volume,” Comput. Mater. Sci., 65, pp. 197–202. [CrossRef]
Paul, S. K. , 2013, “ Real Microstructure Based Micromechanical Model to Simulate Microstructural Level Deformation Behavior and Failure Initiation in DP 590 Steel,” Mater. Des., 44, pp. 397–406. [CrossRef]
Paul, S. K. , and Kumar, A. , 2012, “ Micromechanics Based Modeling to Predict Flow Behavior and Plastic Strain Localization of Dual Phase Steels,” Comput. Mater. Sci., 63, pp. 66–74. [CrossRef]
Sodjit, S. , and Uthaisangsuk, V. , 2012, “ Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels,” Mater. Des., 41, pp. 370–379. [CrossRef]
Vajragupta, N. , Uthaisangsuk, V. , Schmaling, B. , Münstermann, S. , Hartmaier, A. , and Bleck, W. , 2012, “ A Micromechanical Damage Simulation of Dual Phase Steels Using XFEM,” Comput. Mater. Sci., 54, pp. 271–279. [CrossRef]
Chen, P. , Ghassemi-Armaki, H. , Kumar, S. , Bower, A. , Bhat, S. , and Sadagopan, S. , 2014, “ Microscale-Calibrated Modeling of the Deformation Response of Dual-Phase Steels,” Acta Mater., 65, pp. 133–149. [CrossRef]
Ramazani, A. , Abbasi, M. , Prahl, U. , and Bleck, W. , 2012, “ Failure Analysis of DP600 Steel During the Cross-Die Test,” Comput. Mater. Sci., 64, pp. 101–105. [CrossRef]
Ramazani, A. , Mukherjee, K. , Prahl, U. , and Bleck, W. , 2012, “ Modelling the Effect of Microstructural Banding on the Flow Curve Behaviour of Dual-Phase (DP) Steels,” Comput. Mater. Sci., 52(1), pp. 46–54. [CrossRef]
Ramazani, A. , Mukherjee, K. , Prahl, U. , and Bleck, W. , 2012, “ Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size,” Metall. Mater. Trans. A, 43(10), pp. 3850–3869. [CrossRef]
Ramazani, A. , Mukherjee, K. , Quade, H. , Prahl, U. , and Bleck, W. , 2013, “ Correlation Between 2D and 3D Flow Curve Modelling of DP Steels Using a Microstructure-Based RVE Approach,” Mater. Sci. Eng. A, 560, pp. 129–139. [CrossRef]
Ramazani, A. , Mukherjee, K. , Schwedt, A. , Goravanchi, P. , Prahl, U. , and Bleck, W. , 2013, “ Quantification of the Effect of Transformation-Induced Geometrically Necessary Dislocations on the Flow-Curve Modelling of Dual-Phase Steels,” Int. J. Plast., 43, pp. 128–152. [CrossRef]
Ramazani, A. , Pinard, P. T. , Richter, S. , Schwedt, A. , and Prahl, U. , 2013, “ Characterisation of Microstructure and Modelling of Flow Behaviour of Bainite-Aided Dual-Phase Steel,” Comput. Mater. Sci., 80, pp. 134–141. [CrossRef]
Ramazani, A. , Schwedt, A. , Aretz, A. , Prahl, U. , and Bleck, W. , 2013, “ Characterization and Modelling of Failure Initiation in DP Steel,” Comput. Mater. Sci., 75, pp. 35–44. [CrossRef]
Ramazani, A. , Ebrahimi, Z. , and Prahl, U. , 2014, “ Study the Effect of Martensite Banding on the Failure Initiation in Dual-Phase Steel,” Comput. Mater. Sci., 87, pp. 241–247. [CrossRef]
Abid, N. H. , Abu Al-Rub, R. K. , and Palazotto, A. N. , 2015, “ Computational Modeling of the Effect of Equiaxed Heterogeneous Microstructures on Strength and Ductility of Dual Phase Steels,” Comput. Mater. Sci., 103, pp. 20–37. [CrossRef]
Asgari, S. A. , Hodgson, P. D. , Yang, C. , and Rolfe, B. F. , 2009, “ Modeling of Advanced High Strength Steels With the Realistic Microstructure–Strength Relationships,” Comput. Mater. Sci., 45(4), pp. 860–866. [CrossRef]
Nygårds, M. , and Gudmundson, P. , 2002, “ Three-Dimensional Periodic Voronoi Grain Models and Micromechanical FE-Simulations of a Two-Phase Steel,” Comput. Mater. Sci., 24(4), pp. 513–519. [CrossRef]
Ghosh, S. , Nowak, Z. , and Lee, K. , 1997, “ Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells,” Acta Mater., 45(6), pp. 2215–2234. [CrossRef]
Kadkhodapour, J. , Schmauder, S. , Raabe, D. , Ziaei-Rad, S. , Weber, U. , and Calcagnotto, M. , 2011, “ Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-Homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels,” Acta Mater., 59(11), pp. 4387–4394. [CrossRef]
Ghassemi-Armaki, H. , Maaß, R. , Bhat, S. P. , Sriram, S. , Greer, J. R. , and Kumar, K. S. , 2014, “ Deformation Response of Ferrite and Martensite in a Dual-Phase Steel,” Acta Mater., 62, pp. 197–211. [CrossRef]
Peng-Heng, C. , and Preban, A. , 1985, “ The Effect of Ferrite Grain Size and Martensite Volume Fraction on the Tensile Properties of Dual Phase Steel,” Acta Metall., 33(5), pp. 897–903. [CrossRef]
Calcagnotto, M. , Adachi, Y. , Ponge, D. , and Raabe, D. , 2011, “ Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging,” Acta Mater., 59(2), pp. 658–670. [CrossRef]
Jiang, Z. , Guan, Z. , and Lian, J. , 1995, “ Effects of Microstructural Variables on the Deformation Behaviour of Dual-Phase Steel,” Mater. Sci. Eng. A, 190(1), pp. 55–64. [CrossRef]
Petch, N. J. , 1953, “ The Cleavage Strength of Polycrystals,” J. Iron Steel Inst., 174, pp. 25–28.
Fu, H. H. , Benson, D. J. , and Meyers, M. A. , 2001, “ Analytical and Computational Description of Effect of Grain Size on Yield Stress of Metals,” Acta Mater., 49(13), pp. 2567–2582. [CrossRef]
Fu, H. H. , Benson, D. J. , and Meyers, M. A. , 2004, “ Computational Description of Nanocrystalline Deformation Based on Crystal Plasticity,” Acta Mater., 52(15), pp. 4413–4425. [CrossRef]
Abu Al-Rub, R. K. , 2008, “ Interfacial Gradient Plasticity Governs Scale-Dependent Yield Strength and Strain Hardening Rates in Micro/Nano Structured Metals,” Int. J. Plast., 24(8), pp. 1277–1306. [CrossRef]
Ohno, N. , and Okumura, D. , 2007, “ Higher-Order Stress and Grain Size Effects Due to Self-Energy of Geometrically Necessary Dislocations,” J. Mech. Phys. Solids, 55(9), pp. 1879–1898. [CrossRef]
Voyiadjis, G. Z. , Abu Al-Rub, R. K. , and Palazotto, A. N. , 2006, “ On the Small and Finite Deformation Thermo-Elasto-Viscoplasticity Theory for Strain: Algorithmic and Computational Aspects,” Eur. J. Comput. Mech., 15(7–8), pp. 945–987.
Hibbitt, D., Karlsson, B., and Sorensen, P., 2013, “ Abaqus, Version 6.13-2,” Dassault Systémes Simulia Corporation, Johnston, RI.
Reddy, J. N. , 2004, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford, UK.
Clayton, J. D. , 2011, Nonlinear Mechanics of Crystals, Springer, Dordrecht, The Netherlands.
Choi, S. H. , Kim, E. Y. , Woo, W. , Han, S. H. , and Kwak, J. H. , 2013, “ The Effect of Crystallographic Orientation on the Micromechanical Deformation and Failure Behaviors of DP980 Steel During Uniaxial Tension,” Int. J. Plast., 45, pp. 85–102. [CrossRef]
Rodriguez, R. M. , and Gutierrez, I. , 2003, “ A Unified Formulation to Predict the Tensile Curves of Steels With Different Microstructures,” Mater. Sci. Forum, 426–432, pp. 4525–4530. [CrossRef]
Saeidi, N. , Ashrafizadeh, F. , and Niroumand, B. , 2014, “ Development of a New Ultrafine Grained Dual Phase Steel and Examination of the Effect of Grain Size on Tensile Deformation Behavior,” Mater. Sci. Eng. A, 599, pp. 145–149. [CrossRef]
Anand, L. , Gurtin, M. E. , Lele, S. P. , and Gething, C. , 2005, “ A One-Dimensional Theory of Strain-Gradient Plasticity: Formulation, Analysis, Numerical Results,” J. Mech. Phys. Solids, 53(8), pp. 1789–1826. [CrossRef]
Fleck, N. A. , and Hutchinson, J. W. , 1997, “ Strain Gradient Plasticity,” Adv. Appl. Mech., 33, pp. 295–361.
Marketz, F. , and Fischer, F. D. , 1994, “ A Micromechanical Study on the Coupling Effect Between Microplastic Deformation and Martensitic Transformation,” Comput. Mater. Sci., 3(2), pp. 307–325. [CrossRef]
Tjahjanto, D. , Turteltaub, S. , Suiker, A. , and Van der Zwaag, S. , 2006, “ Modelling of the Effects of Grain Orientation on Transformation-Induced Plasticity in Multiphase Carbon Steels,” Model. Simul. Mater. Sci. Eng., 14(4), pp. 617–636. [CrossRef]
Jia, N. , Cong, Z. H. , Sun, X. , Cheng, S. , Nie, Z. H. , Ren, Y. , Liaw, P. K. , and Wang, Y. D. , 2009, “ An In Situ High-Energy X-Ray Diffraction Study of Micromechanical Behavior of Multiple Phases in Advanced High-Strength Steels,” Acta Mater., 57(13), pp. 3965–3977. [CrossRef]
Xiao, L. , Fan, Z. , Jinxiu, Z. , Mingxing, Z. , Mokuang, K. , and Zhenqi, G. , 1995, “ Lattice-Parameter Variation With Carbon Content of Martensite—I: X-Ray-Diffraction Experimental Study,” Phys. Rev. B, 52(14), pp. 9970–9978. [CrossRef]
Radu, M. , Valy, J. , Gourgues, A. F. , Strat, F. L. , and Pineau, A. , 2005, “ Continuous Magnetic Method for Quantitative Monitoring of Martensitic Transformation in Steels Containing Metastable Austenite,” Scr. Mater., 52(6), pp. 525–530. [CrossRef]
Ekrami, A. , 2005, “ High Temperature Mechanical Properties of Dual Phase Steels,” Mater. Lett., 59(16), pp. 2070–2074. [CrossRef]
Sarwar, M. , Manzoor, T. , Ahmad, E. , and Hussain, N. , 2007, “ The Role of Connectivity of Martensite on the Tensile Properties of a Low Alloy Steel,” Mater. Des., 28(6), pp. 1928–1933. [CrossRef]
Ahmad, E. , Manzoor, T. , Ziai, M. M. A. , and Hussain, N. , 2012, “ Effect of Martensite Morphology on Tensile Deformation of Dual-Phase Steel,” J. Mater. Eng. Perform., 21(3), pp. 382–387. [CrossRef]
Voyiadjis, G. Z. , and Abu Al-Rub, R. K. , 2005, “ Gradient Plasticity Theory With a Variable Length Scale Parameter,” Int. J. Solids Struct., 42(14), pp. 3998–4029. [CrossRef]
Aifantis, K. E. , and Willis, J. R. , 2005, “ The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals,” J. Mech. Phys. Solids, 53(5), pp. 1047–1070. [CrossRef]
Abu Al-Rub, R. K. , 2007, “ Prediction of Micro and Nanoindentation Size Effect From Conical or Pyramidal Indentation,” Mech. Mater., 39(8), pp. 787–802. [CrossRef]
Abu Al-Rub, R. K. , Ettehad, M. , and Palazotto, A. N. , 2015, “ Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity–Damage Model,” Int. J. Solids Struct., 58, pp. 178–189. [CrossRef]
Erdogan, M. , and Tekeli, S. , 2003, “ The Effect of Martensite Volume Fraction and Particle Size on the Tensile Properties of a Surface-Carburized AISI 8620 Steel With a Dual-Phase Core Microstructure,” Mater. Charact., 49(5), pp. 445–454. [CrossRef]
Balint, D. , Deshpande, V. , Needleman, A. , and van der Giessen, E. , 2005, “ A Discrete Dislocation Plasticity Analysis of Grain-Size Strengthening,” Mater. Sci. Eng. A, 400–401, pp. 186–190. [CrossRef]
Calcagnotto, M. , Ponge, D. , and Raabe, D. , 2010, “ Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels,” Mater. Sci. Eng. A, 527(29), pp. 7832–7840. [CrossRef]
Wu, Q. , and Zikry, M. A. , 2014, “ Microstructural Modeling of Crack Nucleation and Propagation in High Strength Martensitic Steels,” Int. J. Solids Struct., 51, pp. 4345–4356. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Virtual RVE with Vf,M = 40% and (b) corresponding finite element mesh

Grahic Jump Location
Fig. 2

Stress–strain responses of DP980 used for (a) modeling martensite particle size-effect (microcompression pillar testing data from Ghassemi-Armaki et al. [36]) and (b) modeling ferrite grain size-effect (X-ray diffraction data from Jia et al. [56])

Grahic Jump Location
Fig. 3

RVEs generated with a constant ferrite–martensite interphase thickness of 1 μm with varying martensite morphology of (a)–(c) equiaxed and (d)–(f) elongated. The dimension of the elongated and equiaxed RVEs are 50 × 50 μm and 100 × 100 μm, respectively.

Grahic Jump Location
Fig. 4

Macroscopic responses of RVEs with varying martensite particle size (a) with and (b) without a constant 1 μm interphase (Vf,M = 40%)

Grahic Jump Location
Fig. 5

Contours of equivalent plastic strain for elongated RVEs with varying martensite phase sizes of 7 μm, 5 μm, and 3 μm without interphase

Grahic Jump Location
Fig. 6

Contours of equivalent plastic strain for elongated RVEs with varying martensite phase size of 7 μm, 5 μm, and 3 μm with interphase

Grahic Jump Location
Fig. 7

Virtual RVEs of constant 40% Vf,M with varying grain sizes of (a) and (d) 7 μm, (b) and (e) 5 μm, and (c) and (f) 2 μm with a constant morphology of martensite islands. (a)–(c) show elongated martensite and (d)–(f) show equiaxed martensite.

Grahic Jump Location
Fig. 8

Comparing the macroscopic stress–strain responses ofRVEs with varying ferrite grain sizes and martensite morphology while martensite volume fraction is set constant (Vf,M = 40%). The results are compared for the case where ferrite grains are not considered.

Grahic Jump Location
Fig. 9

(a) UTS, yield strength and (b) strain at UTS, and strain at 95% UTS as a function of grain size for both equiaxed and elongated martensite particles

Grahic Jump Location
Fig. 10

Virtual RVEs with constant grain sizes of 5 μm but extended with a factor of (a) 1, (b) 5, and (c) 10 with a constant volume fraction and arrangement of martensite islands (Vf,M = 40%). (a)–(c) show elongated martensite and (d)–(f) show equiaxed martensite.

Grahic Jump Location
Fig. 11

Comparing the macroscopic responses of RVEs, constant 40% Vf,M with ferrite grains elongated with a factor of one, five, and ten for (a) equiaxed martensite phase and (b) elongated martensite phase for direction of loading



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In