Stresses at the Surface of a Flat Three-Dimensional Ellipsoidal Cavity

[+] Author and Article Information
L. Mirandy, B. Paul

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pa.

J. Eng. Mater. Technol 98(2), 164-172 (Apr 01, 1976) (9 pages) doi:10.1115/1.3443360 History: Received November 06, 1974; Revised March 07, 1975; Online August 17, 2010


The stress field associated with a thin ellipsoidal cavity in an isotropic elastic medium with arbitrary tractions at distant boundaries is needed to generalize Griffith’s two-dimensional fracture criterion. Such a solution is given here. It is first formulated for a general ellipsoidal cavity having principal semiaxes a, b, and c, and then it is reduced to the specific case of a “flat” ellipsoid for which a and b are very much greater than c. An explicit solution of the general problem is possible but the results are somewhat unwieldy. The dominant terms of an asymptotic solution for small c/b, however, are shown to provide remarkably simple expressions for the stresses everywhere on the surface of the cavity. The applied normal stress parallel to the c axis and the shears lying in a plane perpendicular to it were found to produce surface stresses proportional to (b/c) × applied stress, with the amplification of other components of applied stress being negligible in comparison. Analytical expressions for the location and magnitude of the maximum surface stress are developed along with stress intensity factors for the elliptical crack (c = 0). Three dimensional effects due to ellipsoidal planform aspect ratio (b/a) and Poisson’s ratio are reported.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In