The Use of Classification Zones for Fatigue Behavior in Steels

[+] Author and Article Information
M. P. Weiss

Dept. of Mechanical Engineering, Univ. of California at Berkeley; A.D.A.; Technion, Haifa, Israel

J. Eng. Mater. Technol 99(1), 23-25 (Jan 01, 1977) (3 pages) doi:10.1115/1.3443398 History: Received March 03, 1976; Online August 17, 2010


Numerous studies on fatigue damage and fatigue crack propagation in the past dealt with these problems, either by a cumulative damage approach, or using crack propagation equations based on linear elastic fracture mechanics. Although these two approaches are not compatible, each is useful for predicting fatigue behavior correctly, but only within defined limits. This study introduces the “fatigue phase diagram”, which classifies different combinations of stresses and crack lengths in a given specimen, as zones in which different fatigue evaluation criteria, and possibly different fatigue mechanisms govern. Furthermore, a definition of the “threshold crack length” is proposed for consideration as the end of the crack initiation stage. It is suggested that most stress-intensity-range-threshold studies in the literature, were performed with stress range under the fatigue limit of the material, and therefore no crack initiation or propagation could have been measured. Any additional study should specify the zone of the tests on the fatigue phase diagram, so that correlations between different tests could be done with the proper data only.

Copyright © 1977 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In