Application of the R-Curve Concept to Fatigue Crack Growth

[+] Author and Article Information
D. P. Wilhem, M. M. Ratwani

Northrop Aircraft Group, Hawthorne, Calif. 90250

J. Eng. Mater. Technol 100(4), 416-420 (Oct 01, 1978) (5 pages) doi:10.1115/1.3443513 History: Received January 17, 1978; Revised June 16, 1978; Online August 17, 2010


Crack growth resistance for both static (rising load) and for cyclic fatigue crack growth has been shown to be a continuous function over a range of 0.1 μm to 10 cm in crack extension for 2024-T3 aluminum. Crack growth resistance to each fatigue cycle of crack extension is shown to approach the materials ordinary undirectional static crack resistance value when the cyclic stress ratio is zero. The fatigue crack extension is averaged over many cycles and is correlated with the maximum value of the crack tip stress intensity, Kmax . A linear plot of crack growth resistance for fatigue and static loading data shows similar effects of thickness, stress ratio, and other parameters. The effect of cyclic stress ratio on crack growth resistance for 2219 aluminum indicates the magnitude of differences in resistance when plotted to a linear scale. Prediction of many of these trends is possible using one of several available crack growth data correlating techniques. It appears that a unique resistance curve, dependent on material, crack orientation, thickness, and stress/physical environment, can be developed for crack extensions as small as 0.076 μm (3 μ inches). This wide range, crack growth resistance curve is seen of immense potential for use in both fatigue and fracture studies.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In