The Nature of Chip Formation in Orthogonal Machining

[+] Author and Article Information
Daeyong Lee

Metallurgy Laboratory, General Electric Corporate Research and Development Schenectady, NY 12301

J. Eng. Mater. Technol 106(1), 9-15 (Jan 01, 1984) (7 pages) doi:10.1115/1.3225683 History: Received February 11, 1983; Online September 23, 2009


Orthogonal machining experiments were conducted at the cutting speed of 8.5 × 10−2 cm/s with 6061-T6 aluminum, 4340 steel and Ti-6Al-4V titanium to measure strain distributions in the deformed chip using a grid analysis technique. While the aluminum alloy with low strength and the steel with high strain hardening coefficient displayed large uniform strains with a continuous chip morphology, the titanium alloy exhibited highly nonuniform strain distributions within segmented chips. Some of these observations as well as published machining test results could be rationalized on the basis of a shear failure criterion where a specific level of critical shear strain might be estimated on the basis of a thermal-mechanical instability analysis.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In