Biaxial Creep-Fatigue Failure Characteristics in Two FCC Materials

[+] Author and Article Information
S. Y. Zamrik, F. Zahiri

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802

J. Eng. Mater. Technol 109(3), 203-208 (Jul 01, 1987) (6 pages) doi:10.1115/1.3225964 History: Received February 23, 1987; Online September 15, 2009


This paper describes the failure mode observed in two types of FCC structural materials: waspaloy and type 316 stainless steel as a result of biaxial low cycle fatigue at elevated temperatures. Torsional cycling was applied at high as well as low strain ranges. Creep effect was assessed by introducing hold periods of 90 seconds in the waspaloy tests and 30 minutes in the stainless steel tests. Data obtained from fatigue and creep-fatigue tests have shown that the failure process in the two materials was controlled by two failure mechanisms which depended, to different degrees, on the state of stress, dwell time, and temperature. The failure mechanisms were assessed by observing crack growth in each material under strain level and temperature. In the waspaloy, the mode of crack growth was more temperature than stress dependent, while in the stainless steel, it was stress dependent. The microstructure analysis showed that each type of crack growth was caused by variations in slip band formation, stages of crack initiation and propagation, secondary cracking and cracking of grain boundaries. Creep showed more interaction with fatigue in the stainless steel material than in the waspaloy.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In