External Pressure Loading of Spiral Paper Tubes: Theory and Experiment

[+] Author and Article Information
T. D. Gerhardt

Sonoco Products Company, 505D Science Dr., Madison, WI 53711

J. Eng. Mater. Technol 112(2), 144-150 (Apr 01, 1990) (7 pages) doi:10.1115/1.2903300 History: Revised May 09, 1989; Online April 29, 2008


A closed-form elasticity solution is developed to predict stresses and strains in spiral paper tubes loaded axisymmetrically. No assumptions are made on stress distributions through the tube wall. Thus, the solution is valid for thick-walled tubes. The validity of this solution is established by comparison with experimental results. Measured strains in tubes subjected to external pressure showed remarkable agreement with the elasticity solution. After experimental verification, the elasticity solution is used to examine stress distributions in paper tubes loaded in external pressure. In both paper and isotropic tubes, the hoop stress dominates the other three stresses. However, the hoop stress distribution in paper tubes was radically different from the isotropic case. In paper tubes: (1) hoop stress was concentrated at the outer wall, especially for thicker tubes and (2) maximum hoop stress remained constant as tube thickness was increased. These differences can be attributed to the extremely small modulus in the radial direction of a paper tube. The hoop stress distributions indicate that isotropic, thick-walled cylinder theory is inapplicable for modeling paper tubes.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In