A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part I: Plastic Flow and Damage

[+] Author and Article Information
J. H. Lee, Y. Zhang

Department of Mechanical Engineering, University of Alaska, Fairbanks, AK 99775

J. Eng. Mater. Technol 116(1), 69-79 (Jan 01, 1994) (11 pages) doi:10.1115/1.2904257 History: Received May 01, 1991; Revised June 10, 1993; Online April 29, 2008


Gurson’s mixed hardening plasticity model (which takes into account the progressive damage due to void nucleation and growth of an initially dense material), with strain and stress-controlled nucleations, was used in a large deformation finite element program to study the plastic flow and damage in the uniaxial compression of cylinders under sticking friction. Effects of strain hardening, nucleation models, yield surface curvature, and geometry on the distributions and evolutions of stresses, strains, mean stress, void fractions, and coalescence are studied in detail. Using Gurson’s isotropic hardening model, positive mean and axial stresses developed at the bulge of the cylinder with growth of voids at latter stages of deformation. Due low stress triaxiality (Σm /σe <0.6) at the bulge, the process is nucleation rather than growth dominated for the majority of the cases studied. At failure, the maximum void fraction at the bulge among all cases studied is 0.085 and is far less than the critical void fraction (≈0.15) for coalescence.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In