A Finite-Element Work-Hardening Plasticity Model of the Uniaxial Compression and Subsequent Failure of Porous Cylinders Including Effects of Void Nucleation and Growth—Part II: Localization and Fracture Criteria

[+] Author and Article Information
J. H. Lee, Y. Zhang

Department of Mechanical Engineering, University of Alaska Fairbanks, AK 99775

J. Eng. Mater. Technol 118(2), 169-178 (Apr 01, 1996) (10 pages) doi:10.1115/1.2804883 History: Received June 10, 1993; Online November 27, 2007


In Part I [1] of this paper, Gurson’s mixed hardening plasticity model with strain and stress-controlled nucleations, was used in a large deformation finite element program to study the plastic flow and damage in the uniaxial compression of cylinders under sticking friction. Due to low stress triaxiality at the bulge of the cylinders, it was found that localization may occur before void coalescence. In this paper, necessary conditions of localizations are analyzed for the axial compression of porous cylinders under sticking friction. Shear band type of localization with a normal mode of fracture has been predicted for the majority of the cases studied. Various existing localization conditions and fracture criteria are assessed using the results from the simulation. The maximum shear stress at failure is approximately constant and a constant critical damage can not be found.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In