Behavior of a Unidirectional Metal-Matrix Composite Under Thermomechanical Loading

[+] Author and Article Information
Heoung-Jae Chun, Isaac M. Daniel

Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208

J. Eng. Mater. Technol 118(3), 310-316 (Jul 01, 1996) (7 pages) doi:10.1115/1.2806811 History: Received September 25, 1994; Revised August 27, 1995; Online November 27, 2007


The thermoelastoplastic behavior of a unidirectional metal matrix composite (SiC/Al) under thermomechanical loading was studied with a micromechanical model based on the average field theory. The silicon carbide fiber is considered elastic and temperature independent whereas the matrix is thermoviscoplastic and fitted into a series of power law strain hardening models. The thermoelastoplastic analysis of the composite was carried out by introducing the concept of secant properties of the matrix. Analytical predictions were compared with experimental results. Under longitudinal tensile loading the predicted stress-strain curves were in good agreement with experimental curves at three temperatures (24, 288, and 399°C). Under transverse tensile loading the secant properties of the matrix and the average stresses in the matrix and fiber (at room temperature) were obtained as a function of applied stress. The predicted stress-strain curves under transverse loading were in satisfactory agreement with experimental ones at temperatures up to 399°C. Longitudinal and transverse thermal strains as a function of temperature were also predicted and compared favorably with experimental measurements.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In