Serrated Flow and Surface Markings in Aluminum Alloys

[+] Author and Article Information
Ming Li, Daniel J. Lege

Materials Mechanics and Microstructure Center, Alcoa Technical Center, Alcoa Center, PA 15069-0001

J. Eng. Mater. Technol 120(1), 48-56 (Jan 01, 1998) (9 pages) doi:10.1115/1.2806837 History: Received May 12, 1996; Revised June 02, 1997; Online November 27, 2007


Serrated flow and associated progressive surface markings severely restrict the application of some aluminum sheet alloys for automotive body exteriors. This paper attempts to approach the phenomenon from the localization theory of continuum mechanics as well as from the classical atomistic and dislocation considerations. Plane strain tension tests were conducted for a commercial Al-Mg alloy (5182-O) at different strain rates and temperatures, and the local temperature changes were measured by an infrared thermal imaging system. Continuum mechanics analysis provided the insight into the myth that band surface markings never appear under biaxial tension strain states. In addition, continuum mechanics analysis shed light on the observation that PLC bands were not seen on the surface of plane strain tension specimens even though the stress-strain curves exhibited serrations. Finally, it is emphasized that only by combining the efforts of continuum mechanics at the macroscale and materials science at the microscale, can a complete understanding of the phenomenon be reached.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In