Manufacture and Testing of a Functionality Graded Material

[+] Author and Article Information
J. Lambros, A. Narayanaswamy, M. H. Santare, G. Anlas

Mechanical Engineering Department, University of Delaware, Newark, DE 19716

J. Eng. Mater. Technol 121(4), 488-493 (Oct 01, 1999) (6 pages) doi:10.1115/1.2812406 History: Received January 14, 1999; Revised May 12, 1999; Online November 27, 2007


A novel technique is presented for the fabrication and fracture testing of large-scale polymeric based Functionality Graded Materials (FGMs). The technique generates a continuously inhomogeneous property variation by taking advantage of the susceptibility of a polyethylene carbon monoxide copolymer (ECO) to ultraviolet irradiation. The resulting FGMs exhibit a varying Young’s modulus, usually in a linear fashion, from approximately 160 MPa to 250 MPa over 150 mm wide specimens. The fracture behaviour of the FGM is experimentally investigated through the use of single edge notch fracture tests on both homogeneously irradiated and functionally graded ECO. Two approaches are used to evaluate fracture parameters: The first, a hybrid numerical-experimental method, is based on far field measurements only. The second uses digital image correlation to obtain near tip measurements. The energy release rates of uniformly irradiated ECO and of several FGMs are measured and compared. It was seen that the FGM showed a built-in fracture resistance behavior implying that it requires increased driving force to sustain crack growth.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In