Numerical Simulation of a Heat-Treated Ring Gear Blank

[+] Author and Article Information
C. Mgbokwere

Scientific Research Laboratory, Ford Motor Company, Dearborn, MI 48121

M. Callabresi

MLC Technical Consultant, Livermore, CA 94550

J. Eng. Mater. Technol 122(3), 305-314 (Mar 02, 2000) (10 pages) doi:10.1115/1.482802 History: Received December 01, 1999; Revised March 02, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Mgbokwere, C., Dowling, W., Smith, D., Copple, W., and Mack C., 1999, “2D-Simulation of a 211 Ring gear Blank,” The Third International Conference on Quenching and Control Distortion, ASM, pp. 234–253.
Ishigawa,  H. J., 1978, “Phase Transformation in Steels,” J. Thermal Stress., 1, pp. 211–222.
Burmett,  J. A., and Padovan,  J., 1979, “Residual Stress Fields in Heat-Treated Case-Hardened Cylinders,” J. Thermal Stress., 2, pp. 251–263.
Rammerstorfer,  F. G., Fischer,  W., Mitter,  K., Bathe,  J., and Snyder,  M. D., 1981, “On Thermo-Elastic-Plastic Analysis of Heat-Treatment Processes Including Creep and Phase Changes,” Comput. Struct., 13, pp. 771–779.
Leblond,  J. B., Devaux,  J., and Devaux,  J. C., 1989, “Mathematical Modeling of Transformation Plasticity in Steels I: case of Ideal-Plastic Phases,” Int. J. Plast., 5, pp. 573–591.
VonBergen, R. T., 1992, “The Effects of Quenchant Media Selection and Control on the Distortion of Engineered Steel Parts,” First International Conference on Quenching and Distortion Control, G. E. Totten, ed., pp. 275–282.
Roberts,  C. S., 1953, “Effects of Carbon on the Volume Fractions and Lattice Parameters of Retained Austenite and Martensite,” Trans. AIME, 197, p. 203.
Kirkaldy, J. S., and Venugopalan, D., 1984, “Phase Transformation in Ferrous Alloys,” AIME Publications, Marder, A. R., and Goldenstein, J. I., eds., p. 125.
Watt,  D. F., Coon,  L., Bibby,  M., Goldak,  J., and Henwood,  C., 1988, “An Algorithm for Modelling Microstructural Development in Weld Heat-Affected Zones. Part A. Reaction Kinetics,” Acta Metall., 36, pp. 3029–3035.
Asby,  M. F., and Easterling,  K. E., 1982, “First Report on Diagrams for Grain Growth in Welds,” Acta Metall., 30, pp. 1969–1978.
Lusk, M., Krauss, G., and Jou, H., 1995, “A New Balance Principle for Modeling Phase Transformation Kinetics,” International Conference on Martensite Transformations, pp. 123–131.
Bammann, D. J., Prantil, V. C., and Lathrop, J. F., 1995, “A Model of Phase Transformation Plasticity,” Modelling of Casting, Welding and Advanced Solidification Processes VII, Cross, M., and Campbell, J., eds., pp. 275–285.
Fischer,  F. D., Sun,  Q-P., and Tanaka,  K., 1996, “Transformation-Induced Plasticity (TRIP),” Appl. Mech. Rev., 49, pp. 317–364.
Krauss, G., 1992, “Heat Treatment, Microstructures, and Residual Stresses in Carburized Steels,” First International Conference on Quenching and Distortion Control, G. E. Totten, ed., pp. 181–191.
Das, S., Upadhya, G., and Chandra, U., 1992, “Prediction of Macro- and Micro-Residual Stress in Quenching using Phase Transformation Kinetics,” First International Conference on Quenching and Distortion Control, G. E. Totten, ed., pp. 229–234.


Grahic Jump Location
Ring gear blank used for simulation
Grahic Jump Location
Heat treat process model schematic
Grahic Jump Location
(a) Illustration of regions where heat transfer coefficient is applied. (b) Location of thermocouples on the gear blank.
Grahic Jump Location
Two-dimensional mesh used in the simulation
Grahic Jump Location
Results of the carbon diffusion analysis. (a) Carbon contour plot and (b) carbon gradient from bottom inside diameter inward.
Grahic Jump Location
Optimum distribution of the ten heat transfer coefficient
Grahic Jump Location
Comparison of measured and calculated time-temperature profile
Grahic Jump Location
Temperature distribution at four different time intervals
Grahic Jump Location
(a) Contour plot of phase volume fraction at 12.8 s. (b) Contour plot of phase volume fraction at 44.5 s. (c) Contour plot of phase volume fraction at 240 s. (d) Contour plot of phase volume fraction at 780 s.
Grahic Jump Location
Contour plot of the hardness with the Rockwell C conversion in parenthesis. Also shown are four locations of the phase volume fraction at 780 s.
Grahic Jump Location
Calculated phase volume fraction from the surface of the blank to the core
Grahic Jump Location
Optical micrographs of center core sections (a) bottom and (b) top. The bottom microstructure is a bainite formed at a higher temperature with more ferrite than the top microstructure which consists of bainite and martensite.
Grahic Jump Location
Evolution of volume fraction in the bottom core (a) and from the bottom inside surface (b) as a function of time with corresponding calculated cooling curve
Grahic Jump Location
Calculated stress and temperature profile as a function of time at four different locations. (a) Stress in the longitudinal direction (b) stress in the hoop direction.
Grahic Jump Location
Contour plot of stresses and plastic strain
Grahic Jump Location
Comparison between computed and measured stresses. (a) Current simulation (b) previous simulation.
Grahic Jump Location
Illustration of the computed and measured displacement. (a) Current simulation (b) previous simulation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In