Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model

[+] Author and Article Information
László S. Tóth, Alain Molinari

Laboratoire de Physique et Mécanique des Matériaux, ISGMP, Université de Metz, Ile du Saulcy, 57045 Metz, Cedex 1, France

Yuri Estrin

Institut für Werkstoffkunde und Werkstofftechnik, Technische Universität Clausthal Agricolastr. 6, 38678 Clausthal-Zellerfeld, Germanye-mail: juri.estrin@tu-clausthal.de

J. Eng. Mater. Technol 124(1), 71-77 (Jun 26, 2001) (7 pages) doi:10.1115/1.1421350 History: Received December 12, 2000; Revised June 26, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Estrin,  Y., Tóth,  L. S., Molinari,  A., and Bréchet,  Y., 1998, “A dislocation-based model for all hardening stages in large strain deformation,” Acta Mater., 46, pp. 5509–5522.
Stüwe,  H. P., 1965, “Die Fliesskurven Vielkristalliner Metalle und ihre Anwendung in der Platizitätsmechanik,” Z. Metallkd., 56, p. 633.
Kovács,  I., 1977, Rev. Deform. Behav. Mater., 2, p. 211.
Gil Sevillano,  J., Van Houtte,  P., and Aernoudt,  E., 1980, “Large Strain Work Hardening and Textures,” Prog. Mater. Sci., 25, p. 69.
Argon,  A. S., and Haasen,  P., 1993, Acta Metall., 41, p. 3289.
Nes,  E., 1998, Prog. Mater. Sci., 41, p. 129.
Mecking, H., and Estrin, Y., 1987, Constitutive Relations and Their Physical Basis, S. J. Anderson et al., eds., Riso Natl. Lab. Denmark, pp. 123–145.
Cugy, P., Estrin, Y., Bouaziz, O., Brèchet, Y., and Schmitt, J.-H., 2001, “Dislocation based modeling of strain hardening in interstitial free steels as applied to torsion deformation,” to be published.
Molinari,  A., Canova,  G. R., and Ahzi,  S., 1987, “A self consistent approach of the large deformation polycrystal plasticity,” Acta Metall., 35, pp. 2983–2994.
Kocks,  U. F., 1976, ASME J. Eng. Mater. Technol., 98, p. 76.
Estrin, Y., 1996, Unified Constitutive Laws of Plastic Deformation, A. Krausz and K. Krausz, eds., Academic Press, pp. 69–106.
Müller,  M., Zehetbauer,  M., Borbély,  A., and Ungár,  T., 1995, Z. Metallkd., 86, p. 827.
Müller,  M., Zehetbauer,  M., Borbély,  A., and Ungár,  T., 1996, Scr. Metall. Mater., 35, p. 1461.
Ungár, T., 1997, private communication.
Zehetbauer, M., 2000, private communication.
Kopacz,  I., Tóth,  L. S., Zehetbauer,  M., and Stüwe,  H. P., 1999, “Large strain hardening curves corrected for texture development,” Modeling and Simulation in Materials Science and Engineering, 7, pp. 875–891.
Molinari,  A., and Tóth,  L. S., 1994, “Tuning a self consistent viscoplastic model by finite element results, Part I: Modeling,” Acta Metall. Mater., 42, pp. 2453–2458.
Zehetbauer,  M., and Seumer,  V., 1993, “Cold work hardening in stages IV and V of f.c.c. metals—I. Experiments and interpretation,” Acta Metall. Mater., 41, pp. 577–588.
Ungár,  T., Tóth,  L. S., Illy,  J., and Kovács,  I., 1986, “Dislocation structure and work hardening in polycrystalline OFHC copper rods deformed by torsion and extension,” Acta Metall., 34, pp. 1257–1267.
Ungár,  T., Groma,  I., and Wilkens,  M., 1989, “Asymmetric X-ray line broadening of plastically deformed crystals. II. Evaluation procedure and applications to [001]-Cu crystals,” J. Appl. Crystallogr., 22, pp. 26–34.
Zehetbauer,  M., Schafler,  E., Ungár,  T., Kopacz,  S., and Bernstorf,  S., 2002, “Investigation of the Microstructural Evolution During Large Strain Cold Working of Metals by Means of Synchrotron Radiation—A Comparative Overview,” ASME J. Eng. Mater. Technol., 124, published in this issue, pp. 41–47.


Grahic Jump Location
The geometry of the cell structure
Grahic Jump Location
Equivalent stress–equivalent strain curves predicted by the self consistent model
Grahic Jump Location
Rate of hardening as a function of stress (“Kocks-Mecking-plot”) showing Stages III and IV (self-consistent polycrystal model)
Grahic Jump Location
Stress-strain curves in terms of von Mises quantities predicted by the self consistent model
Grahic Jump Location
Comparison of experimental 18 and predicted average dislocation densities
Grahic Jump Location
Dislocation densities predicted by the self consistent model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In