Interaction of Phase Transformation and Diffusion in Steels

[+] Author and Article Information
E. Gamsjäger, F. D. Fischer

Institut für Mechanik, Christian Doppler Laboratory—Functionally Oriented Material Design, Montanuniversität Leoben, Franz-Josef-Str. 18, A—8700 Leoben, Austria

J. Svoboda

Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ—616 62 Brno, Czech Republic

J. Eng. Mater. Technol 125(1), 22-26 (Dec 31, 2002) (5 pages) doi:10.1115/1.1525251 History: Received November 23, 2001; Revised June 02, 2002; Online December 31, 2002
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Krielaart,  G. P., and van der Zwaag,  S., 1998, “Simulations of Pro-Eutectoid Ferrite Formation Using a Mixed Control Growth Model,” Mater. Sci. Eng., A, A246, pp. 104–116.
Tanaka,  T., Aaronson,  H. I., and Enomoto,  M., 1995, “Growth Kinetics of Grain Boundary Allotriomorphs of Proeutectoid Ferrite in Fe-C-Mn-X2 Alloys,” Metall. Trans. A, 26A, pp. 561–580.
Gustafson,  P., 1985, “A Thermodynamic Evaluation of the Fe-C System,” Scand. J. Metall., 14, pp. 259–267.
Huang,  W., 1989, “An Assessment of the Fe-Mn System,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 13, pp. 243–252.
Huang,  W., 1990, “Thermodynamic Assessment of the Mn-C System,” Scand. J. Metall., 19, pp. 26–32.
Huang,  W., 1990, “Thermodynamic Assessment of the Fe-Mn-C System,” Metall. Trans. A, 21A, pp. 2115–2123.
Hillert,  M., and Jarl,  M., 1978, “A Model for Alloying Effects in Ferromagnetic Metals,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2, pp. 227–238.
Hillert, M., 1998, Phase Equlibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge.
Eriksson,  G., and Hack,  K., 1990, “ChemSage—A Computer Program for Calculating of Complex Chemical Equilibria,” Metall. Trans. B, 21B, pp. 1013–1023.
Tanaka,  T., Aaronson,  H. I., and Enomoto,  M., 1995, “Calculations of α/γ Phase Boundaries in Fe-C-X1-X2 Systems From the Central Atoms Model,” Metall. Mater. Trans. A, 26A, pp. 535–545.
Gilmour,  J. B., Purdy,  G. R., and Kirkaldy,  J. S., 1972, “Thermodynamics Controlling the Proeutectoid Ferrite Transformations in Fe-C-Mn Alloys,” Metall. Trans., 3, pp. 1455–1464.
Horstmann, D., 1985, Das Zustandsschaubild Eisen-Kohlenstoff, 5 , Auflage, Verlag Stahleisen mbH, Düsseldorf.
Hillert,  M., 1999, “Overview No. 135: Solute Drag, Solute Trapping and Diffusional Dissipation of Gibbs Energy,” Acta Mater., 47, pp. 4481–4505.
Svoboda,  J., Fischer,  F. D., Fratzl,  P., Gamsjäger,  E., and Simha,  N. K., 2001, “Kinetics of Interfaces During Diffusional Transformation,” Acta Mater., 49, pp. 1249–1259.
Liu,  Z.-K., Ågren,  J., 1989, “On the Transition From Local Equilibrium to Paraequilibrium During the Growth of Ferrite in Fe-Mn-C Austenite,” Acta Mater., 37, pp. 3157–3163.
Oi,  K., Lux,  C., and Purdy,  G. R., 2000, “A Study of the Influence of Mn and Ni on the Kinetics of the Proeutectoid Ferrite Reaction in Steels,” Acta Mater., 48, pp. 2147–2155.
van Leeuwen,  Y., Kop,  T. A., Sietsma,  J., and van der Zwaag,  S., 1999, “Phase Transformation in Low-Carbon Steels; Modelling the Kinetics in Terms of the Interface Mobility,” Journal de Physique IV, 9, pp. 401–409.
Krielaart,  G. P., and van der Zwaag,  S., 1998, “Kinetics of γ→α Phase Transformations in Fe-Mn Alloys Containing Low Manganese,” Mater. Sci. Technol., 14, pp. 10–18.
Ågren,  J., 1989, “A Simplified Treatment of the Transition From Diffusion Controlled to Diffusion-Less Growth,” Acta Mater., 37, pp. 181–189.
Christian, J. W., 1981, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford.
Wits,  J. J., Kop,  T. A., van Leeuwen,  Y., Sietsma,  J., and van der Zwaag,  S., 2000, “A Study on the Austenite to Ferrite Phase Transformation in Binary Substitutional Iron Alloys,” Mater. Sci. Eng., A, A283, pp. 234–241.
Lee,  K. J., and Lee,  J. K., 1999, “Modelling of γ/α Transformation in Niobium Containing Microalloyed Steels,” Scr. Mater., 40, pp. 831–836.
Svoboda,  J., Fischer,  F. D., Fratzl,  P., and Kroupa,  A., 2002, “Diffusion in Multicomponent Systems With No or Dense Sources and Sinks for Vacancies,” Acta Mater., 50, pp. 1369–1381.


Grahic Jump Location
The phase boundary (α+γ/γ) in the ternary Fe-C -Mn system at different temperatures
Grahic Jump Location
Schematic molar Gibbs energy diagram. The tangent planes on the austenite and ferrite surface are intersected with the zero-carbon plane, resulting in the lines a and b and in the lines ape and bpe in case of paraequilibrium. The driving force is given as the distance between the two lines at the mole fraction XMnα.
Grahic Jump Location
Chemical driving force Δfchem in the Fe-C-Mn system at constant Fe/Mn ratio. The ratio of the Fe to Mn sites has been set to 98.5 and the initial mole fractions XC and XMn in γ are 0.005 and 0.01, respectively.
Grahic Jump Location
Unit cell of the two-phase composite during γ/α phase transformation. a denotes the austenite grainsize.
Grahic Jump Location
Comparison between the kinetics in a binary Fe-C alloy (XC=0.005) and a ternary Fe-C-Mn alloy (Initial mole fractions in γ: XC=0.005,XMn=0.01) at 800°C and a grainsize a of 20 μm.
Grahic Jump Location
Experimentally and theoretically obtained data on the growth kinetics of ferrite reported by Lee and Lee 24 compared to the results predicted by our numerical routine



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In