Li, X., and Bhushan, B., 2002, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications,” Mater. Charact., 48 (1), pp. 11–36.

Picu, R. C., 2000, “Atomistic-Continuum Simulation of Nano-Indentation in Molybdenum,” J. Comput.-Aided Mater. Des.

[CrossRef], 7 (2), pp. 77–87.

Komvopoulos, K., and Yan, W., 1997, “Molecular Dynamics Simulation of Single and Repeated Indentation,” J. Appl. Phys.

[CrossRef], 82 (10), pp. 4823–4830.

Kelchner, C. L., Plimpton, S., and Hamilton, J. C., 1998, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phys. Rev. B

[CrossRef], 58 (17), pp. 11085–11088.

Walsh, P., Kalia, R. K., Nakano, A., and Vashishta, P., 2000, “Amorphization and Anisotropic Fracture Dynamics During Nanoindentation of Silicon Nitride: A Multimillion Atom Molecular Dynamics Study,” Appl. Phys. Lett.

[CrossRef], 77 (26), pp. 4332–4334.

Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., and Foiles, S. M., 2001, “Surface Step Effects on Nanoindention,” Phys. Rev. Lett.

[CrossRef], 87 (16), p. 165507.

Fang, T. H., Weng, C. I., and Chang, J. G., 2003, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement,” Mater. Sci. Eng., A

[CrossRef], 357 (1‐2), pp. 7–12.

Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M., and Nix, W. D., 2003, “Atomistic Simulations of Elastic Deformation and Dislocation Nucleation During Nanoindentation,” J. Mech. Phys. Solids

[CrossRef], 51 (5), pp. 901–920.

Feichtinger, D., Derlet, P. M., and Van Swygenhoven, H., 2003, “Atomistic Simulations of Spherical Indentations in Nanocrystalline Gold,” Phys. Rev. B

[CrossRef], 67 (2), pp. 024113.

Hasnaoui, A., Derlet, P. M., and Van Swygenhoven, H., 2004, “Interaction Between Dislocations and Grain Boundaries under an Indenter—A Molecular Dynamics Simulation,” Acta Mater., 52 (8), pp. 2251–2258.

Van der Giessen, E., and Needleman, A., 1995, “Discrete Dislocation Plasticity: A Simple Planar Model,” Modell. Simul. Mater. Sci. Eng., 3 (5), pp. 688–691.

Phillips, R., 2001, "*Crystals, Defects and Microstructures: Modeling Across Scales*", Cambridge University Press, New York, Chap. 12.

Curtin, W. A., and Miller, R. E., 2003, “Atomistic/Continuum Coupling in Computational Materials Science,” Modell. Simul. Mater. Sci. Eng.

[CrossRef], 11 (3), pp. R33–R68.

Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F., 1991, “Crack Propagation in BCC Crystals Studied with a Combined Finite-Element and Atomistic Model,” Philos. Mag. A, 64 (4), pp. 851–878.

Broughton, J. Q., Abraham, F. F., Bernstein, N., and Kaxiras, E., 1999, “Concurrent Coupling of Length Scales: Methodology and Application,” Phys. Rev. B

[CrossRef], 60 (4), pp. 2391–2403.

Rudd, R. E., and Broughton, J. Q., 1998, “Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements,” Phys. Rev. B

[CrossRef], 58 (10), pp. R5893–R5896.

Rudd, R. E., and Broughton, J. Q., 2000, “Concurrent Coupling of Length Scales in Solid State Systems,” Phys. Status Solidi B

[CrossRef], 217 (1), pp. 251–291.

Cai, W., Koning, M., Bulatov, V., and Yip, S., 2000, “Minimizing Boundary Reflections in Coupled-Domain Simulations,” Phys. Rev. Lett.

[CrossRef], 85 (15), pp. 3213–3216.

E, Weinan, and Huang, Z., 2001, “Matching Conditions in Atomistic-Continuum Modeling of Materials,” Phys. Rev. Lett.

[CrossRef], 87 (13), p. 135501.

E, Weinan, and Huang, Z., 2002, “A Dynamic Atomistic-Continuum Method for the Simulation of Crystalline Materials,” J. Comput. Phys.

[CrossRef], 182 (1), pp. 234–261.

Clayton, R. W., and Engquist, B., 1977, “Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations,” Bull. Seismol. Soc. Am., 67 (6), pp. 1529–1540.

Deymier, P. A., and Vasseur, J. Q., 2002, “Concurrent Multiscale Model of an Atomic Crystal Coupled with Elastic Continua,” Phys. Rev. B

[CrossRef], 66 (13), p. 134106.

Muralidharan, K., Deymier, P. A., and Simmons, J. H., 2003, “A Concurrent Multiscale Finite Difference Time Domain/Molecular Dynamics Method for Bridging an Elastic Continuum to an Atomistic System,” Modell. Simul. Mater. Sci. Eng., 11 (4), pp. 487–501.

Shenoy, V. B., Shenoy, V., and Phillips, R., 1999, “Finite Temperature Quasicontinuum Methods,” Mater. Res. Soc. Symp. Proc., 538 , pp. 465–471.

Shenoy, V. B., 2003, “Multi-scale Modeling Strategies in Materials Science- The Quasicontinuum Method,” Bull. Mater. Sci., 26 (1), pp. 742–745.

LeSar, R., Najafabadi, R., and Srolovitz, D. J., 1989, “Finite-Temperature Defect Properties from Free-Energy Minimization,” Phys. Rev. Lett.

[CrossRef], 63 (6), pp. 624–627.

Curtarolo, S., and Ceder, G., 2002, “Dynamics of an Inhomogeneously Coarse Grained Multiscale System,” Phys. Rev. Lett.

[CrossRef], 88 (25), p. 255504.

Dupuy, L., Tadmor, E. B.Miller, R. E., and Phillips, R., 2004, “A Finite Temperature Quasicontinuum,” Bull. Am. Phys. Soc., 49 (1), p. 1420.

Park, H. S., and Liu, W. K., 2004, “In Introduction and Tutorial on Multiple Scale Analysis in Solids,” Comput. Methods Appl. Mech. Eng., 193 (17‐20), pp. 1733–1772.

Park, H. S., Karpov, E. G., and Liu, W. G., 2003, “A Temperature Equation for Coupled Atomistic/Continuum Simulations,” Comput. Methods Appl. Mech. Eng., 193 (17‐20), pp. 1713–1732.

Wagner, G. J., and Liu, W. K., 2003, “Coupling of Atomistic and Continuum Simulations using a Bridging Scale Decomposition,” J. Comput. Phys.

[CrossRef], 190 (1), pp. 249–274.

Xiao, S. P., and Belytschko, T., 2004, “A Bridging Domain Method for Coupling Continua with Molecular Dynamics,” Comput. Methods Appl. Mech. Eng., 193 (17–20), pp. 1645–1669.

Belytschko, T., and Xiao, S. P., 2003, “Coupling methods for continuum model with molecular model,” Int. J. Multiscale Comp. Eng., 1 (1), pp. 115–126.

Shastry, V., Curtin, W. A., and Miller, R. E., 2004, “A Dynamic Finite Temperature Coupled Atomistic/Discrete Dislocation Method,” submitted to Model Simul Mater. Sci. Eng.

Holian, B., and Ravelo, R., 1995, “Fracture Simulations Using Large-scale Molecular Dynamics,” Phys. Rev. B

[CrossRef], 51 (11), pp. 11275–11288.

Karpov, E. G., Wagner, G. J., and Liu, W. K., 2005, “A Green’s Function Approach to Deriving Wave-Transmitting Boundary Conditions in Molecular Dynamics Simulations,” Int. J. Numer. Methods Eng., 62 (9), pp. 1250–1262.

Liu, W. K., Karpov, E. G., Zhang, S., and Wagner, H. S., 2004, “An Introduction to Computational Nanomechanics and Materials,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 193 (17‐20), pp. 1529–1578.

Shilkrot, L. E., Miller, R. E., and Curtin, W. A., 2002, “Coupled Atomistic and Discrete Dislocation Plasticity,” Phys. Rev. Lett.

[CrossRef], 89 (2), p. 025501.

Miller, R. E., Shilkrot, L. E., and Curtin, W. A., 2004, “A Coupled Atomistic and Discrete Dislocation Plasticity Simulation of Nanoindentation into Single Crystal Thin Films,” Acta Mater., 52 (2), pp. 271–284.

Shilkrot, L. E., Miller, R. E., and Curtin, W. A., 2004, “Multiscale Plasticity Modeling: Coupled Atomistic and Discrete Dislocation Mechanics,” J. Mech. Phys. Solids, 52 (4), pp. 755–787.

Van Vliet, K. J., and Suresh, S., 2002, “Simulations of Cyclic Normal Indentation of Crystal Surfaces Using the Bubble-raft Model,” Philos. Mag. A, 82 (10), pp. 1993–2001.

Daw, M. S., and Baskes, M. I., 1984, “Embedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals,” Phys. Rev. B

[CrossRef], 29 (12), pp. 6443–6453.

Smirnova, J. A., Zhigilei, L. V., and Garrison, B. J., 1999, “A Combined Molecular Dynamics and Finite Flement Method Technique Applied to Laser Induced Pressure Wave Propagation,” Comput. Phys. Commun.

[CrossRef], 118 (1), pp. 11–16.

Cleveringa, H. H. M., Van der Giessen, E., and Needleman, A., 1999, “A Discrete Dislocation Analysis of Bending,” Int. J. Plast., 15 (8), pp. 837–868.

Parameswaran, V. R., Urabe, N., and Weertman, J., 1972, “Dislocation Mobility in Aluminum,” J. Appl. Phys.

[CrossRef], 43 (7), pp. 2982–2986.

Jang, S., and Voth, G. A., 1997, “Simple Reversible Molecular Dynamics Algorithms for Nosé-Hoover Chain Dynamics,” J. Chem. Phys.

[CrossRef], 107 (22), pp. 9514–9526.

Shiari, B., and Miller, R. E., 2004, “A Coupled Atomistic and Discrete Dislocation Plasticity Simulation (CADD): Dynamics and Finite Temperature Considerations,” Proceedings of the 2nd Canadian Network of Computational Materials Science Conference , Hamilton, Ontario, Canada, p. 5.

Shiari, B., and Miller, R. E., “Coupled Atomistic and Discrete Dislocation Mechanics: The (CADD) Model,” Proceedings of the 16th Canadian Materials Science Conference , Ottawa, Ontario, Canada, p. 46.

Shiari, B., and Miller, R. E., 2004, “Finite Temperature Coupled Atomistic/Continuum Discrete Dislocation Dynamics Simulation of Nanoindentation,” Proceedings of the International Workshop on Nanomechanics , Pacific Grove, CA.