Dorfmann, A., Fuller, K. N. G., and Ogden, R. W., 2002, “Shear, Compressive and Dilatational Response of Rubber-Like Solids Subject to Cavitations Damage,” Int. J. Heat Mass Transfer, 39 , pp. 1845–1861.

Obata, Y., Kawabuta, S., and Kawai, H., 1970, “Mechanical Properties of NBR Vulcanizates Under Finite Deformation,” J. Polym. Sci., Part A-2, 8 , pp. 903–919.

Ogden, R. W., 1972, “Large Deformation Isotropic Elasticity—On The Correlation of Theory and Experiment for Incompressible Rubber Like Solids,” "*Proceedings of the Royal Society*", London, Series A, 326 , pp. 565–584.

Hibbit, H. D., Marcal, P. V., and Rice, J. R., 1972, “Finite Element Formulation for Problems of Large Strain and Large Displacement,” Int. J. Heat Mass Transfer, 6 , pp. 1069–1086.

James, A. G., and Green, A., 1975, “Strain Energy Functions of Rubber. II. The Characterization of Filled Vulcanizates,” J. Appl. Polym. Sci.

[CrossRef], 19 , pp. 2319–2330.

Chen, J. S., Satyamurthy, K., and Hirsschfelt, L. R., 1994, “Consistent Finite Element Procedures for Nonlinear Rubber Elasticity with a Higher Order Strain Energy Function,” Comput. Struct., 50 , pp. 715–727.

Herrmann, L. H., 1964, “Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variation Theorem,” AIAA J., 2 , pp. 1333–1336.

Maniatty, A. M. L., Klaas, Y. O., and Shephard, M. S., 2002, “Higher Order Stabilized Finite Element Method for Hyperelastic Finite Deformation,” Comput. Methods Appl. Mech. Eng., 191 , pp. 1491–1503.

Pantuso, D., and Bathe, K. J., 1997, “On the Stability of Mixed Finite Elements in Large Strain Analysis of Incompressible Solids,” Finite Elem. Anal. Design, 28 , pp. 83–104.

Pian, T. H. H., and Sumihara, K., 1984, “Rational Approach for Assumed Stress Finite Elements,” Int. J. Numer. Methods Eng.

[CrossRef], 20 , pp. 1685–1695.

Brezzi, F., and Fortin, M., 1991, "*Mixed and Hybrid Finite Element Methods*", Springer, Berlin, Germany.

Pian, T. H. H., 1995, “State-of-the-Art Development of Hybrid/Mixed Finite Element Method,” Finite Elem. Anal. Design

[CrossRef], 21 , pp. 5–20.

Chang, W. V., and Peng, S. H., 1992, “Nonlinear Finite Element Analysis of the Butt-Joint Elastomer Specimen,” J. Adhes. Sci. Technol., 6 , pp. 919–939.

Kakavas, P. A., and Chang, W. V., 1992, “An Extension of the General Measure of Strain in Hyperelastic Solids,” J. Appl. Polym. Sci., 45 , pp. 865–869.

Kakavas, P. A., and Blatz, P. J., 1991, “A Geometric Determination of Void Production in an Elastic Pancake,” J. Appl. Polym. Sci., 43 , pp. 1081–1086.

Simo, J. C., and Hughes, T. J. R., 1998, "*Computational Inelasticity*", Springer, New York.

Truesdell, C., and Noll, W., 1965, “The Non-linear Field Theories of Mechanics,” "*Encyclopedia of Physics*", S.Flugge, ed., Springer, Berlin, Vol. III/3 .

Ogden, R. W., 1984, "*Nonlinear Elastic Deformations*", Wiley, New York.

Simo, J. C., and Taylor, R. L., 1991, “Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 85 , pp. 273–310.

Valanis, K. C., and Landel, R., 1967, “The Strain Energy Function of a Hyperelastic Material in Terms of the Extension Ratios,” J. Appl. Phys.

[CrossRef], 38 , pp. 2997–3002.

Mooney, M., 1940, “A Theory of Large Elastic Deformation,” J. Appl. Phys.

[CrossRef], 11 , pp. 582–592.

Rivlin, R. S., 1984, “Forty Years of Nonlinear Continuum Mechanics,” "*Proceedings of the 9th International Congress on Rheology*", Mexico, Sept. 4-7, pp. 1–29,

Salomon, O., Olle, S., and Barrat, A., 1999, “Finite Element Analysis of Base Isolated Buildings Subjected to Earthquake Loads,” Int. J. Numer. Methods Eng.

[CrossRef], 46 , pp. 1741–1761.

Wilson, E., 1974, “The Static Condensation Algorithm,” Int. J. Numer. Methods Eng., 8 , pp. 199–203.

Bathe, K. J., 1982, "*Finite Element Procedures in Engineering Analysis*", Prentice–Hall, Englewood Cliffs, NJ.

Treloar, L. R. G., 1975, "*The Physics of Rubber Elasticity*", Clarendon, Oxford, UK.

Peng, S. H., and Chang, W. V., 1997, “A Compressible Approach in Finite Element Analysis of Rubber-Elastic Materials,” Comput. Struct.

[CrossRef], 62 , pp. 573–593.

Kakavas, P. A., 2000, “A New Development of the Strain Energy Function for Hyperelastic Materials Using a Log-Strain Approach,” J. Appl. Polym. Sci.

[CrossRef], 77 , pp. 660–672.

Criscione, J. C., Humphery, J. D., Douglas, A. S., and Hunter, W., 2000, “An Invariant Basis for Natural Strain which Yields Orthogonal Stress Response Terms in Isotropic Hyperelasticity,” J. Mech. Phys. Solids

[CrossRef], 48 , pp. 2445–2465.

Gent, A., 1996, “A New Constitutive Relation for Rubber,” Rubber Chem. Technol., 69 , pp. 59–61.

Arruda, E. M., and Boyce, M., 1993, “A Three Dimensional Constitutive Model for the Large Deformation Stretch Behavior of Rubber Elastic Materials,” J. Mech. Phys. Solids

[CrossRef], 41 , pp. 389–412.

Horgan, C. O., and Saccomandi, G., 1999, “Pure Axial Shear of Isotropic Hyperelastic Nonlinearly Elastic Materials with Limiting Chain Extensibility,” J. Elast., 57 , pp. 159–170.

Beatty, M. F., 2003, “A Stretch Averaged Full Network Model for Rubber Elasticity,” J. Elast., 70 , pp. 65–86.

Kakavas, P. A., and Blatz, P. J., 2005, “New Constitutive Equation for Unfilled Rubbers Based on Maximum Chain Extensibility Approach,” "*Proceedings ECCMR05 Conference Stockholm*", Sweden, June 27–29.

Williams, M., and Schapery, R., 1965, “Spherical Flow Instability in Hydrostatic Tension,” Int. J. Fract. Mech., 1 , pp. 64–66.

Lin, Y. Y., Hui, C. Y., and Conway, H. D., 2000, “A Detailed Elastic Analysis of the Flat Punch (Tack) Test for Pressure Sensitive Adhesives,” J. Polym. Sci., Part B: Polym. Phys.

[CrossRef], 38 , pp. 2769–2784.

Brown, F., 1958, "*Introduction to Bessel Functions*", Dover, New York.

Chalhoub, M. S., and Kelly, J. M., 1990, “Effect of Bulk Compressibility on the Stiffness of Cylindrical Base Isolation Bearings,” Int. J. Solids Struct.

[CrossRef], 26 , pp. 743–760,

Gent, A. N., 2000, "*Engineering with Rubber: How to Design Rubber Components*", 2nd ed., Hanser, Munich, Germany.