Research Papers

Characterization of Nanoscaled TiO2 Produced by Simplified Sol–Gel Method Using Organometallic Precursor

[+] Author and Article Information
Perica Paunović

Faculty of Technology and Metallurgy,
SS Cyril and Methodius University,
Rudjer Bošković, 16,
Skopje 1000, Republic of Macedonia
e-mail: pericap@tmf.ukim.edu.mk

Anita Grozdanov

Faculty of Technology and Metallurgy,
SS Cyril and Methodius University,
Rudjer Bošković Str., 16,
Skopje 1000, Republic of Macedonia
e-mail: anita@tmf.ukim.edu.mk

Andrej Češnovar

OKTA Crude Oil Refinery AD,
Skopje 1000, Republic of Macedonia
e-mail: cesnovar.andrej@gmail.com

Petre Makreski

Institute of Chemistry,
Faculty of Natural Sciences and Mathematics,
SS Cyril and Methodius University,
Arhimedova Str., 5,
Skopje 1000, Republic of Macedonia

Gennaro Gentile

Institute for Chemistry and
Technology of Polymers,
National Research Council,
Fabricato Oliveti 70,
Pozzuoli, Napoli 80078, Italy
e-mail: gengenti@ictp.cnr.it

Bogdan Ranguelov

Institute of Physical Chemistry,
Bulgarian Academy of Sciences,
Acad.G.Bonchev Str., Bl.11,
Sofia 1113, Bulgaria
e-mail: rangelov@ipc.bas.bg

Emilija Fidančevska

Faculty of Technology and Metallurgy,
SS Cyril and Methodius University,
Rudjer Bošković Str., 16,
Skopje 1000, Republic of Macedonia
e-mail: emilijaf@tmf.ukim.edu.mk

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received October 6, 2013; final manuscript received November 8, 2014; published online December 15, 2014. Assoc. Editor: Vadim V. Silberschmidt.

J. Eng. Mater. Technol 137(2), 021003 (Apr 01, 2015) (7 pages) Paper No: MATS-13-1184; doi: 10.1115/1.4029112 History: Received October 06, 2013; Revised November 08, 2014; Online December 15, 2014

This work is concerned with development of sol–gel method for preparation of nanoscaled TiO2 using organometallic precursor—titanium tetraisopropoxide (TTIP) and determination of the present crystalline phases depending on the temperature of further thermal treatment. The characteristic processes and transformations during the thermal treatment were determined by means of thermal gravimetric analysis and/or differential thermal analysis (TGA/DTA) method. The crystalline structure and size of the TiO2 crystallites were analyzed by means of Raman spectroscopy and X-ray powder diffraction (XRPD) method. At 250 °C, cryptocrystalline structure was detected, where amorphous TiO2 is accompanied with crystalline anatase. The anatase crystallite phase is stable up to 650 °C, whereas at higher temperature rutile transformation begins. It was observed that at 800 °C, almost the whole TiO2 is transformed to rutile phase. According to XRPD analysis, the increase of the temperature influences on the increase of the size of the crystalline particles ranging from 6 nm at 250 °C to less than 100 nm at 800 °C. The size and shape of the TiO2 crystalline particles were observed by transmission electron microscopy (TEM). The shape of the studied samples changes from nanospheres (250, 380, and 550 °C) to nanorods (650 and 800 °C). Morphology of the formed TiO2 aggregates was observed by scanning electron microscopy (SEM).

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Matsuda, S., and Kato, A., 1983, “Titanium Oxide Based Catalysts—A Review,” Appl. Catal., 8(2), pp. 149–165. [CrossRef]
Tauster, S. J., Fung, S. C., and Garten, R. L., 1978, “Strong Metal-Support Interactions. Group 8 Noble Metals Supported on Titanium Dioxide,” J. Am. Chem. Soc., 100(1), pp. 170–175. [CrossRef]
Frank, S. N., and Bard, A. J., 1977, “Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders,” J. Phys. Chem., 81(15), pp. 1484–1488. [CrossRef]
Trasatti, S., 1994, “Transition Metal Oxides: Versatile Materials for Electrocatalysis,” Electrochemistry of Novel Materials, J.Lipkowski and P. N.Ross, eds., VCH, New York.
Mezey, E. J., 1966, “Pigments and Reinforcing Agents,” Vapor Deposition, C. F.Powell, J. H.Oxley, and J. M.Blocher, eds., Wiley, New York.
Reithmaier, J. P., Paunović, P., Kulish, W., Popov, C., and Petkov, P., eds., 2011, Nanotechnological Basis for Advanced Sensors, Springer, Dordrecht, The Netherlands.
Diebold, U., 2003, “The Surface Science of Titanium Dioxide,” Surf. Sci. Rep., 48(5–8), pp. 53–229. [CrossRef]
Navrotsky, A., and Kleppa, O., 1967, “Enthalpy of the Anatase–Rutile Transformation,” J. Am. Ceram. Soc., 50(11), p. 626. [CrossRef]
Zhang, H., and Banfield, J., 2000, “Understanding Polymorphic Phase Transformation Behavior During Growth of Nanocrystalline Aggregates: Insights From TiO2,” J. Phys. Chem. B, 104(15), pp. 3481–3487. [CrossRef]
Lal, M., Chhabra, V., Ayyub, P., and Maitra, A., 1998, “Preparation and Characterization of Ultrafine TiO2 Particles in Reverse Micelles by Hydrolysis of Titanium Di-Ethylhexyl Sulfosuccinate,” J. Mater. Res., 13(5), pp. 1249–1254. [CrossRef]
Selvaraj, U., Prasadrao, A. V., Komerneni, S., and Roy, R., 1992, “Sol–Gel Fabrication of Epitaxial and Oriented TiO2 Thin Films,” J. Am. Ceram. Soc., 75(5), pp. 1167–1170. [CrossRef]
Bacsa, R. R., and Grätzel, M., 1996, “Rutile Formation in Hydrothermally Crystallized Nanosized Titania,” J. Am. Ceram. Soc., 79(8), pp. 2185–2188. [CrossRef]
Zhang, D., Qi, L., Ma, J., and Cheng, H., 2002, “Formation of Crystalline Nanosized Titania in Reverse Micelles at Room Temperature,” J. Mater. Chem., 12(12), pp. 3677–3680. [CrossRef]
Kutty, T. R. N., Vivekanandan, R., and Murugaraj, P., 1988, “Precipitation of Rutile and Anatase (TiO2) Fine Powders and Their Conversion to MTiO3 (M = Ba, Sr, Ca) by the Hydrothermal Method,” Mater. Chem. Phys., 19(6), pp. 533–546. [CrossRef]
Andersson, M., Oesterlund, L., Ljungstroem, S., and Palmqvist, A., 2002, “Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol,” J. Phys. Chem. B, 106(41), pp. 10674–10679. [CrossRef]
Yang, J., Mei, S., and Ferreira, J. M. F., 2001, “Hydrothermal Synthesis of TiO2 Nanopowders From Tetraalkylammonium Hydroxide Peptized Sols,” Mater. Sci. Eng. C, 15(1–2), pp. 183–185. [CrossRef]
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., 1998, “Formation of Titanium Oxide Nanotube,” Langmuir, 14(12), pp. 3160–3163. [CrossRef]
Li, X. L., Peng, Q., Yi, J. X., Wang, X., and Li, Y. D., 2006, “Near Monodisperse TiO2 Nanoparticles and Nanorods,” Chem. Eur. J., 12(8), pp. 2383–2391. [CrossRef]
Yang, S. W., and Gao, L., 2006, “Fabrication and Shape-Evolution of Nanostructured TiO2 Via a Sol–Solvothermal Process Based on Benzene–Water Interfaces,” Mater. Chem. Phys., 99(2–3), pp. 437–440. [CrossRef]
Wu, J. M., Hayakawa, S., Tsuru, K., and Osaka, A., 2002, “Porous Titania Films Prepared From Interactions of Titanium With Hydrogen Peroxide Solution,” Scr. Mater., 46(1), pp. 101–106. [CrossRef]
Wu, J. M., and Zhang, T. W., 2004, “Photodegradation of Rhodamine B in Water Assisted by Titania Films Prepared Through a Novel Procedure,” Photochem. Photobiol. A, 162(1), pp. 171–177. [CrossRef]
Seifried, S.,Winterer, M., and Hahn, H., 2000, “Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis,” Chem. Vap. Deposition, 6(5), pp. 239–244. [CrossRef]
Corradi, A. B., Bondioli, F., Focher, B., Ferrari, A. M., Grippo, C., Mariani, E., and Villa, C., 2005, “Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders,” J. Am. Ceram. Soc., 88(9), pp. 2639–2641. [CrossRef]
Wu, X., Jiang, Q. Z., Ma, Z. F., Fu, M., and Shangguan, W. F., 2005, “Synthesis of Titania Nanotubes by Microwave Irradiation,” Solid State Commun., 136(9–10), pp. 513–517. [CrossRef]
Li, B., Wang, X., Yan, M., and Li, L., 2002, “Preparation and Characterization of Nano-TiO2 Powder,” Mater. Chem. Phys., 78(1), pp. 184–188 [CrossRef]
Hague, M. J., and Mayo, D. C., 1994, “Controlling Crystallinity During Processing of Nanocrystalline Titania,” J. Am. Ceram. Soc., 77(7), pp. 1957–1960. [CrossRef]
Mehrizad, A., Gharbani, P., and Tabatabii, S. M., 2009, “Synthesis of Nanosized TiO2 Powder by Sol–Gel Method in Acidic Conditions,” J. Iran. Chem. Res., 2(2), pp. 145–149.
Samsonov, G. V., 1982, The Oxide Handbook, IFI/Plenum Press, New York.
Cullity, B. D., 1978, Elements of X-Ray Diffraction, Addison-Wesley, London, UK.
So, W. W., Park, S. B., Kim, K. J., Shin, C. H., and Moon, S. J., 2001, “The Crystalline Phase Stability of Titania Particles Prepared at Room Temperature by the Sol–Gel Method,” J. Mater. Sci., 36(17), pp. 4299–4305. [CrossRef]
Mehranpour, H., Askari, M., Ghamsari, M. S., and Farzalibeik, H., 2010, “Study on the Phase Transformation Kinetics of Sol–Gel Drived TiO2 Nanoparticles,” J. Nanomater., 2010, p. 626978. [CrossRef]
Holgado, M., Cintas, A., Ibisate, M., Serna, C. J., Lopez, C., and Meseguer, F., 2000, “Three-Dimensional Arrays Formed by Monodisperse TiO2 Coated on SiO2 Spheres,” J. Colloid Interface Sci., 229(1), pp. 6–11. [CrossRef] [PubMed]
Lee, M. S., Lee, G. D., Park, S. S., and Hong, S. S., 2003, “Synthesis of TiO2 Nanoparticles in Reverse Microemulsion and Their Photocatalytic Activity,” J. Ind. Eng. Chem., 9(1), pp. 89–95.
Lei, Y., Zhang, L. D., and Fan, J. C., 2001, “Fabrication, Characterization and Raman Study of TiO2 Nanowire Arrays Prepared by Anodic Oxidative Hydrolysis of TiCl3,” Chem. Phys. Lett., 338(4–6), pp. 231–236. [CrossRef]
Oshaka, T., Izumi, F., and Fujiki, Y., 1978, “Raman Spectrum of Anatase, TiO2,” J. Raman Spectrosc., 7(6), pp. 321–324. [CrossRef]
Xu, C. Y., Zhang, P. X., and Yan, L., 2001, “Blue Shift of Raman Peak From Coated TiO2 Nanoparticles,” J. Raman Spectrosc., 32(10), pp. 862–865. [CrossRef]
Choi, H. C., Jung, Y. M., and Kim, S. B., 2005, “Size Effects in the Raman Spectra of TiO2 Nanoparticles,” Vib. Spectrosc., 37(1), pp. 33–38. [CrossRef]
Parker, J. C., and Siegel, R. W., 1990, “Raman Microprobe Study of Nanophase TiO2 and Oxidation-Induced Spectral Changes,” J. Mater. Res., 5(6), pp. 1246–1252. [CrossRef]
Porto, S. P. S., Fleury, P. A., and Damen, T. C., 1966, “Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev., 154(2), pp. 522–526. [CrossRef]
Ma, H. L., Yang, J. Y., Dai, Y., Zhang, Y. B., Lu, B., and Ma, G. H., 2007, “Raman Study of Phase Transformation of TiO2 Rutile Single Crystal Irradiated by Infrared Femtosecond Laser,” Appl. Surf. Sci., 253(18), pp. 7497–7500. [CrossRef]
Xie, Y., and Yuan, C., 2004, “Photocatalysis of Neodymium Ion Modified TiO2 Sol Under Visible Light Irradiation,” Appl. Surf. Sci., 221(1–4), pp. 17–24. [CrossRef]
Xie, Y., and Yuan, C., 2004, “Visible Light Induced Photocatalysis of Cerium Ion Modified Titania Sol and Nanocrystallites,” J. Mater. Sci. Technol., 20(1), pp. 14–18.


Grahic Jump Location
Fig. 1

TGA curve of the Ti(OH)4 produced after sol–gel procedure

Grahic Jump Location
Fig. 2

DTG curve of the Ti(OH)4 produced after sol–gel procedure

Grahic Jump Location
Fig. 3

DTA curve of the Ti(OH)4 produced after sol–gel procedure

Grahic Jump Location
Fig. 4

Raman spectra of TiO2 produced by thermal treatment of Ti(OH)4 at different temperatures

Grahic Jump Location
Fig. 5

XRPD patterns of TiO2 produced by thermal treatment of Ti(OH)4 at different temperatures

Grahic Jump Location
Fig. 6

TEM images of TiO2 produced by thermal treatment of Ti(OH)4 at (a) 250 °C, (b) 380 °C, (c) 550 °C, (d) 650 °C, and (e) 800 °C

Grahic Jump Location
Fig. 7

SEM images of TiO2 produced by thermal treatment of Ti(OH)4 at (a) 250 °C, (b) 380 °C, and (c) 800 °C



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In