Research Papers

Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions

[+] Author and Article Information
O. A. Zambrano

Research Group of Fatigue and Surfaces (GIFS);
Research Group of Tribology,
Polymers, Powder Metallurgy and
Processing of Solid Waste (TPMR),
Materials Engineering School,
Universidad del Valle,
Cali 760033, Colombia
e-mail: oscar.zambrano@correounivalle.edu.co

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received January 24, 2016; final manuscript received May 5, 2016; published online July 8, 2016. Assoc. Editor: Peter W. Chung.

J. Eng. Mater. Technol 138(4), 041010 (Jul 08, 2016) (9 pages) Paper No: MATS-16-1034; doi: 10.1115/1.4033632 History: Received January 24, 2016; Revised May 05, 2016

A subregular solution thermodynamic model was employed to calculate the stacking fault energy (SFE) in Fe–Mn–Al–C–Si steels with contents of carbon 0.2–1.6 wt.%, manganese 1–35 wt.%, aluminum 1–10 wt.%, and silicon 0.5–4 wt.%. Based on these calculations, temperature-dependent and composition-dependent diagrams were developed in the mentioned composition range. Also, the effect of the austenite grain size (from 1 to 300 μm) on SFEs was analyzed. Furthermore, some results of SFE obtained with this model were compared with the experimental results reported in the literature. In summary, the present model introduces new changes that shows a better correlation with the experimental results and also allows to expand the ranges of temperatures, compositions, grain sizes, and also the SFE maps available in the literature to support the design of Fe–Mn–Al–C–Si steels as a function of the SFE.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Song, W. , Ingendahl, T. , and Bleck, W. , 2014, “ Control of Strain Hardening Behavior in High-Mn Austenitic Steels,” Acta Metall. Sin., 27(3), pp. 546–556. [CrossRef]
Suzuki, H. , 1962, “ Segregation of Solute Atoms to Stacking Faults,” J. Phys. Soc. Jpn., 17(2), pp. 322–325. [CrossRef]
Dumay, A. , Chateau, J. P. , Allain, S. , Migot, S. , and Bouaziz, O. , 2008, “ Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel,” Mater. Sci. Eng. A, 483–484, pp. 184–187. [CrossRef]
Dini, G. , Najafizadeh, A. , Monir-Vaghefi, S. M. , and Ueji, R. , 2010, “ Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method,” J. Mater. Sci. Technol., 26(2), pp. 181–186. [CrossRef]
Saeed-Akbari, A. , Imlau, J. , Prahl, U. , and Bleck, W. , 2009, “ Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels,” Metall. Mater. Trans. A, 40(13), pp. 3076–3090. [CrossRef]
Wan, J. , Chen, S. , and Xu, Z. , 2001, “ The Influence of Temperature on Stacking Fault Energy in Fe-Based Alloys,” Sci. China Ser. E, 44(4), pp. 345–352. [CrossRef]
Grässel, O. , Frommeyer, G. , Derder, C. , and Hofmann, H. , 1997, “ Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels,” J. Phys. IV France, 07(C5), pp. C5-383–C5-388.
Sato, K. , Ichinose, M. , Hirotsu, Y. , and Inoue, Y. , 1989, “ Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe–Mn–Al Alloys,” ISIJ Int., 29(10), pp. 868–877. [CrossRef]
Yoo, J. D. , and Park, K.-T. , 2008, “ Microband-Induced Plasticity in a High Mn–Al–C Light Steel,” Mater. Sci. Eng. A, 496(1–2), pp. 417–424. [CrossRef]
Gutierrez-Urrutia, I. , and Raabe, D. , 2012, “ Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe–Mn–Al–C Steel,” Acta Mater., 60(16), pp. 5791–5802. [CrossRef]
Yoo, J. D. , Hwang, S. W. , and Park, K. T. , 2009, “ Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel,” Metall. Mater. Trans. A, 40(7), pp. 1520–1523. [CrossRef]
Antunes, R. A. , and de Oliveira, M. C. L. , 2014, “ Materials Selection for Hot Stamped Automotive Body Parts: An Application of the Ashby Approach Based on the Strain Hardening Exponent and Stacking Fault Energy of Materials,” Mater. Des., 63, pp. 247–256. [CrossRef]
Raabe, D. , Springer, H. , Gutierrez-Urrutia, I. , Roters, F. , Bausch, M. , Seol, J. B. , Koyama, M. , Choi, P. P. , and Tsuzaki, K. , 2014, “ Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels,” JOM, 66(9), pp. 1845–1856. [CrossRef]
Sawaguchi, T. , Nikulin, I. , Ogawa, K. , Sekido, K. , Takamori, S. , Maruyama, T. , Chiba, Y. , Kushibe, A. , Inoue, Y. , and Tsuzaki, K. , 2015, “ Designing Fe–Mn–Si Alloys With Improved Low-Cycle Fatigue Lives,” Scr. Mater., 99, pp. 49–52. [CrossRef]
Kim, J. , and De Cooman, B. C. , 2011, “ On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel,” Metall. Mater. Trans. A, 42(4), pp. 932–936. [CrossRef]
Pierce, D. T. , Bentley, J. , Jiménez, J. A. , and Wittig, J. E. , 2012, “ Stacking Fault Energy Measurements of Fe–Mn–Al–Si Austenitic Twinning-Induced Plasticity Steels,” Scr. Mater., 66(10), pp. 753–756. [CrossRef]
Smallman, R. E. , and Dobson, P. S. , 1970, “ Stacking Fault Energy Measurement From Diffusion,” Metall. Trans., 1(9), pp. 2383–2389.
Schramm, R. E. , and Reed, R. P. , 1975, “ Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels,” Metall. Trans. A, 6(7), pp. 1345–1351. [CrossRef]
Balogh, L. , Ribárik, G. , and Ungár, T. , 2006, “ Stacking Faults and Twin Boundaries in FCC Crystals Determined by X-Ray Diffraction Profile Analysis,” J. Appl. Phys., 100(2), p. 023512. [CrossRef]
Medvedeva, N. I. , Park, M. S. , Van Aken, D. C. , and Medvedeva, J. E. , 2014, “ First-Principles Study of Mn, Al and C Distribution and Their Effect on Stacking Fault Energies in FCC Fe,” J. Alloys Compd., 582, pp. 475–482. [CrossRef]
Güvenç, O. , Roters, F. , Hickel, T. , and Bambach, M. , 2015, “ ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance,” JOM, 67(1), pp. 120–128. [CrossRef]
Curtze, S. , Kuokkala, V. T. , Oikari, A. , Talonen, J. , and Hänninen, H. , 2011, “ Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels,” Acta Mater., 59(3), pp. 1068–1076. [CrossRef]
Pierce, D. , Jiménez, J. , Bentley, J. , Raabe, D. , Oskay, C. , and Wittig, J. , 2014, “ The Influence of Manganese Content on the Stacking Fault and Austenite/ε-Martensite Interfacial Energies in Fe–Mn–(Al–Si) Steels Investigated by Experiment and Theory,” Acta Mater., 68, pp. 238–253. [CrossRef]
Allain, S. , Chateau, J. P. , Bouaziz, O. , Migot, S. , and Guelton, N. , 2004, “ Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys,” Mater. Sci. Eng. A, 387–389(1–2), pp. 158–162. [CrossRef]
Olson, G. B. , and Cohen, M. , 1976, “ A General Mechanism of Martensitic Nucleation—Part I: General Concepts and the FCC → HCP Transformation,” Metall. Trans. A, 7(12), pp. 1897–1904. [CrossRef]
Charles, J. , Berghezan, A. , and Lutts, A. , 1984, “ High Manganese—Aluminum Austenitic Steels for Cryogenic Applications, Some Mechanical and Physical Properties,” J. Phys. Colloques, 45(C1), pp. C1-619–C1-623. [CrossRef]
Garcı́a de Andrés, C. , Caballero, F. G. , Capdevila, C. , and Bhadeshia, H. K. D. H. , 1998, “ Modelling of Kinetics and Dilatometric Behavior of Non-Isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel,” Scr. Mater., 39(6), pp. 791–796. [CrossRef]
Yang, W. S. , and Wan, C. M. , 1990, “ The Influence of Aluminium Content to the Stacking Fault Energy in Fe-Mn-Al-C Alloy System,” J. Mater. Sci., 25(3), pp. 1821–1823. [CrossRef]
Hillert, M. , and Jarl, M. , 1978, “ A Model for Alloying in Ferromagnetic Metals,” Calphad, 2(3), pp. 227–238. [CrossRef]
Inden, G. , 1994, “ Experimental Determination of Phase Diagrams,” Statics and Dynamics of Alloy Phase Transformations, P. A. Turchi and A. Gonis , eds., Springer, New York, pp. 17–43.
Zhang, Y. S. , Lu, X. , Tian, X. , and Qin, Z. , 2002, “ Compositional Dependence of the Néel Transition, Structural Stability, Magnetic Properties and Electrical Resistivity in Fe–Mn–Al–Cr–Si Alloys,” Mater. Sci. Eng. A, 334(1–2), pp. 19–27. [CrossRef]
Huang, W. , 1989, “ An Assessment of the Fe-Mn System,” Calphad, 13(3), pp. 243–252. [CrossRef]
Jin, J.-E. , Jung, M. , Lee, C.-Y. , Jeong, J. , and Lee, Y.-K. , 2012, “ Néel Temperature of High Mn Austenitic Steels,” Met. Mater. Int., 18(3), pp. 419–423. [CrossRef]
Cotes, S. , Fernández Guillermet, A. , and Sade, M. , 1999, “ Gibbs Energy Modelling of the Driving Forces and Calculation of the FCC/HCP Martensitic Transformation Temperatures in Fe-Mn and Fe-Mn-Si Alloys,” Mater. Sci. Eng. A, 273–275, pp. 503–506. [CrossRef]
Ishida, K. , 1976, “ Direct Estimation of Stacking Fault Energy by Thermodynamic Analysis,” Phys. Status Solidi (A), 36(2), pp. 717–728. [CrossRef]
Hickel, T. , Sandlöbes, S. , Marceau, R. K. W. , Dick, A. , Bleskov, I. , Neugebauer, J. , and Raabe, D. , 2014, “ Impact of Nanodiffusion on the Stacking Fault Energy in High-Strength Steels,” Acta Mater., 75, pp. 147–155. [CrossRef]
Lee, Y.-K. , and Choi, C. , 2000, “ Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System,” Metall. Mater. Trans. A, 31(2), pp. 355–360. [CrossRef]
Lee, S.-J. , Lee, Y.-K. , and Soon, A. , 2012, “ The Austenite/ɛ Martensite Interface: A First-Principles Investigation of the fcc Fe(1 1 1)/hcp Fe(0 0 0 1) System,” Appl. Surf. Sci., 258(24), pp. 9977–9981. [CrossRef]
Dinsdale, A. T. , 1991, “ SGTE Data for Pure Elements,” Calphad, 15(4), pp. 317–425. [CrossRef]
Xiong, R. , Peng, H. , Si, H. , Zhang, W. , and Wen, Y. , 2014, “ Thermodynamic Calculation of Stacking Fault Energy of the Fe–Mn–Si–C High Manganese Steels,” Mater. Sci. Eng. A, 598, pp. 376–386. [CrossRef]
Kaufman, L. , 1977, “ Proceedings of the Fourth Calphad Meeting Workshop on Computer Based Coupling of Thermochemical and Phase Diagram Data Held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland,” Calphad, 1(1), pp. 7–89. [CrossRef]
Remy, L. , 1977, “ Temperature Variation of the Intrinsic Stacking Fault Energy of a High Manganese Austenitic Steel,” Acta Metall., 25(2), pp. 173–179. [CrossRef]
Rémy, L. , Pineau, A. , and Thomas, B. , 1978, “ Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys,” Mater. Sci. Eng., 36(1), pp. 47–63. [CrossRef]
Dai, Q.-X. , Wang An-Dong, C. X.-N. , and Luo, X.-M. , 2002, “ Stacking Fault Energy of Cryogenic Austenitic Steels,” Chin. Phys., 11(6), pp. 596–600. [CrossRef]
Lehnhoff, G. R. , Findley, K. O. , and De Cooman, B. C. , 2014, “ The Influence of Silicon and Aluminum Alloying on the Lattice Parameter and Stacking Fault Energy of Austenitic Steel,” Scr. Mater., 92, pp. 19–22. [CrossRef]
Tian, X. , and Zhang, Y. , 2009, “ Effect of Si Content on the Stacking Fault Energy in γ-Fe–Mn–Si–C Alloys—Part I: X-Ray Diffraction Line Profile Analysis,” Mater. Sci. Eng. A, 516(1–2), pp. 73–77. [CrossRef]
Tian, X. , and Zhang, Y. , 2009, “ Effect of Si Content on the Stacking Fault Energy in γ-Fe–Mn–Si–C Alloys—Part II: Thermodynamic Estimation,” Mater. Sci. Eng. A, 516(1–2), pp. 78–83. [CrossRef]
Chen, F. C. , Chou, C. P. , Li, P. , and Chu, S. L. , 1993, “ Effect of Aluminium on TRIP Fe-Mn-Al Alloy Steels at Room Temperature,” Mater. Sci. Eng. A, 160(2), pp. 261–270. [CrossRef]
Tian, X. , Tian, R. , and Zhang, Y. , 2004, “ Effect of Al Content on Work Hardening in Austenitic Fe-Mn-Al-C Alloys,” Can. Metall. Q., 43(2), pp. 183–192. [CrossRef]
Peng, X. , Zhu, D.-Y. , Hu, Z.-M. , Wang, M.-J. , Liu, L.-L. , and Liu, H.-J. , 2014, “ Effect of Carbon Content on Stacking Fault Energy of Fe-20Mn-3Cu TWIP Steel,” J. Iron Steel Res., Int., 21(1), pp. 116–120. [CrossRef]
Brofman, P. J. , and Ansell, G. S. , 1978, “ On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels,” Metall. Trans. A, 9(6), pp. 879–880. [CrossRef]
Abbasi, A. , Dick, A. , Hickel, T. , and Neugebauer, J. , 2011, “ First-Principles Investigation of the Effect of Carbon on the Stacking Fault Energy of Fe–C Alloys,” Acta Mater., 59(8), pp. 3041–3048. [CrossRef]
Gholizadeh, H. , Draxl, C. , and Puschnig, P. , 2013, “ The Influence of Interstitial Carbon on the γ-Surface in Austenite,” Acta Mater., 61(1), pp. 341–349. [CrossRef]
Jun, J.-H. , and Choi, C.-S. , 1998, “ Variation of Stacking Fault Energy With Austenite Grain Size and Its Effect on the MS Temperature of γ → ε Martensitic Transformation in Fe–Mn Alloy,” Mater. Sci. Eng. A, 257(2), pp. 353–356. [CrossRef]
Takaki, S. , Nakatsu, H. , and Tokunaga, Y. , 1993, “ Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy,” Mater. Trans. JIM, 34(6), pp. 489–495. [CrossRef]
Lee, T. , Koyama, M. , Tsuzaki, K. , Lee, Y.-H. , and Lee, C. S. , 2012, “ Tensile Deformation Behavior of Fe–Mn–C TWIP Steel With Ultrafine Elongated Grain Structure,” Mater. Lett., 75, pp. 169–171. [CrossRef]
Ueji, R. , Tsuchida, N. , Terada, D. , Tsuji, N. , Tanaka, Y. , Takemura, A. , and Kunishige, K. , 2008, “ Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel With Fine-Grained Structure,” Scr. Mater., 59(9), pp. 963–966. [CrossRef]
Crampin, S. , Hampel, K. , Vvedensky, D. , and MacLaren, J. , 1990, “ The Calculation of Stacking Fault Energies in Close-Packed Metals,” J. Mater. Res., 5(10), pp. 2107–2119. [CrossRef]
Liao, X. Z. , Srinivasan, S. G. , Zhao, Y. H. , Baskes, M. I. , Zhu, Y. T. , Zhou, F. , Lavernia, E. J. , and Xu, H. F. , 2004, “ Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al,” Appl. Phys. Lett., 84(18), pp. 3564–3566. [CrossRef]
Idrissi, H. , Renard, K. , Ryelandt, L. , Schryvers, D. , and Jacques, P. J. , 2010, “ On the Mechanism of Twin Formation in Fe–Mn–C TWIP Steels,” Acta Mater., 58(7), pp. 2464–2476. [CrossRef]
Kim, J. , Lee, S.-J. , and De Cooman, B. C. , 2011, “ Effect of Al on the Stacking Fault Energy of Fe–18Mn–0.6C Twinning-Induced Plasticity,” Scr. Mater., 65(4), pp. 363–366. [CrossRef]
Jin, J. E. , and Lee, Y. K. , 2012, “ Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel,” Acta Mater., 60(4), pp. 1680–1688. [CrossRef]
Jeong, J. S. , Woo, W. , Oh, K. H. , Kwon, S. K. , and Koo, Y. M. , 2012, “ In situ Neutron Diffraction Study of the Microstructure and Tensile Deformation Behavior in Al-Added High Manganese Austenitic Steels,” Acta Mater., 60(5), pp. 2290–2299. [CrossRef]
Tian, X. , Li, H. , and Zhang, Y. , 2008, “ Effect of Al Content on Stacking Fault Energy in Austenitic Fe–Mn–Al–C Alloys,” J. Mater. Sci., 43(18), pp. 6214–6222. [CrossRef]


Grahic Jump Location
Fig. 4

Variations in composition-dependent SFE map for increases in silicon and manganese content for (a) 1 wt.% Al and (b) 10 wt.% Al

Grahic Jump Location
Fig. 1

Comparison of the calculated SFE values by increasing manganese content for Fe–Mn–0.5 C system in the current work and in the literature at 300 K

Grahic Jump Location
Fig. 2

Variations in the temperature-dependent SFE map of Fe–Mn–Al–C system by increasing the temperature and manganese content for (a) 1 wt.% Al and (b) 10 wt.% Al

Grahic Jump Location
Fig. 3

Two-dimensional SFE (unit: mJ/m2) map for (a) Fe–XMn–1Al–0.5 C alloy system and (b) Fe–XMn–10Al–0.5 C alloy system with different temperatures

Grahic Jump Location
Fig. 5

Variations in composition-dependent SFE map by increasing silicon, manganese, and aluminum content: (a) 15 wt.% Mn and (b) 25 wt.% Mn

Grahic Jump Location
Fig. 6

Two-dimensional SFE (unit: mJ/m2) map at 300 K for (a) Fe–XMn–1Al–XC alloy system, (b) Fe–XMn–3Al–XC alloy system, (c) Fe–XMn–6Al–XC alloy system, and (d) Fe–XMn–9Al–XC alloy system

Grahic Jump Location
Fig. 7

Variations in SFE map by increasing grain size and manganese and aluminum contents: (a) 1 wt.% Al and (b)10 wt.%Al



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In