Research Papers

Large Deflection of Circular Auxetic Membranes Under Uniform Load

[+] Author and Article Information
Teik-Cheng Lim

School of Science and Technology,
SIM University,
Singapore 599491
e-mail: alan_tc_lim@yahoo.com

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received February 29, 2016; final manuscript received April 27, 2016; published online July 8, 2016. Assoc. Editor: Huiling Duan.

J. Eng. Mater. Technol 138(4), 041011 (Jul 08, 2016) (7 pages) Paper No: MATS-16-1077; doi: 10.1115/1.4033636 History: Received February 29, 2016; Revised April 27, 2016

Currently, available results for the large deflection of circular isotropic membranes are valid for Poisson's ratio of 0.2, 0.3, and 0.4 only. This paper explores the deflection of circular membranes when the membrane material is auxetic, i.e., when they possess negative Poisson's ratio and compared against conventional ones. Due to the multistage calculations involved in the exact method, a generic semi-empirical model is proposed to facilitate convenient and direct computation of the membrane deflection as a function of the radial distance; additionally, a specific semi-empirical model is given to provide a more accurate maximum deflection. Comparison of deflection distributions verifies the validity of the semi-empirical model vis-à-vis the exact model. The deflection of circular membrane increases with the diminishing effect as the Poisson's ratio of the membrane material becomes more negative.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Popereka, M. Y. A. , and Balagurov, V. G. , 1969, “ Ferromagnetic Films Having a Negative Poisson Ratio,” Fiz. Tverd. Tela, 11(12), pp. 3507–3513.
Milstein, F. , and Huang, K. , 1979, “ Existence of a Negative Poisson Ratio in FCC Crystals,” Phys. Rev. B, 19(4), pp. 2030–2033. [CrossRef]
Lakes, R. S. , 1987, “ Foam Structures With a Negative Poisson's Ratio,” Science, 235(4792), pp. 1038–1040. [CrossRef] [PubMed]
Lakes, R. S. , 1987, “ Negative Poisson's Ratio Materials,” Science, 238(4826), p. 551. [CrossRef] [PubMed]
Wojciechowski, K. W. , 1987, “ Constant Thermodynamic Tension Monte-Carlo Studies of Elastic Properties of a Two-Dimensional System of Hard Cyclic Hexamers,” Mol. Phys., 61(5), pp. 1247–1258. [CrossRef]
Wojciechowski, K. W. , 1989, “ Two-Dimensional Isotropic System With a Negative Poisson Ratio,” Phys. Lett. A, 137(1–2), pp. 60–64. [CrossRef]
Wojciechowski, K. W. , and Branka, A. C. , 1989, “ Negative Poisson's Ratio in Isotropic Solids,” Phys. Rev. A, 40(12), pp. 7222–7225. [CrossRef]
Caddock, B. D. , and Evans, K. E. , 1989, “ Microporous Materials With Negative Poisson's Ratios—I: Microstructure and Mechanical Properties,” J. Phys. D: Appl. Phys., 22(12), pp. 1877–1882. [CrossRef]
Evans, K. E. , and Caddock, B. D. , 1989, “ Microporous Materials With Negative Poisson's Ratios—II: Mechanisms and Interpretation,” J. Phys. D: Appl. Phys., 22(12), pp. 1883–1887. [CrossRef]
Choi, J. B. , and Lakes, R. S. , 1991, “ Design of a Fastener Based on Negative Poisson's Ratio Foam,” Cell. Polym., 10(3), pp. 205–212.
Caddock, B. D. , and Evans, K. E. , 1995, “ Negative Poisson Ratios and Strain-Dependent Mechanical Properties in Arterial Prostheses,” Biomaterials, 16(14), pp. 1109–1115. [CrossRef] [PubMed]
Karnessis, N. , and Burriesci, G. , 2013, “ Uniaxial and Buckling Mechanical Response of Auxetic Cellular Tubes,” Smart Mater. Struct., 22(8), p. 084008. [CrossRef]
Martz, E. O. , Lakes, R. S. , Goel, V. K. , and Park, J. B. , 2005, “ Design of an Artificial Intervertebral Disc Exhibiting a Negative Poisson's Ratio,” Cell. Polym., 24(3), pp. 127–138.
Dolla, W. J. S. , Fricke, B. A. , and Becker, B. R. , 2007, “ Structural and Drug Diffusion Models of Conventional and Auxetic Drug-Eluting Stents,” ASME J. Med. Devices, 1(1), pp. 47–55. [CrossRef]
Scarpa, F. , 2008, “ Auxetic Materials for Bioprostheses,” IEEE Signal Process. Mag., 25(5), pp. 125–126. [CrossRef]
Lakes, R. S. , and Lowe, A. , 2000, “ Negative Poisson's Ratio Foam as Seat Cushion Material,” Cell. Polym., 19(3), pp. 157–167.
Wang, Y. C. , and Lakes, R. S. , 2002, “ Analytical Parametric Analysis of the Contact Problem of Human Buttocks and Negative Poisson's Ratio Foam Cushions,” Int. J. Solids Struct., 39(18), pp. 4825–4838. [CrossRef]
Alderson, A. , Rasburn, J. , Ameer-Bag, S. , Mullarkey, P. G. , Perrie, W. , and Evans, K. E. , 2000, “ An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or De-Fouling Properties,” Ind. Eng. Chem. Res., 39(3), pp. 654–655. [CrossRef]
Alderson, A. , Davies, P. J. , Evans, K. E. , Alderson, K. L. , and Grima, J. N. , 2005, “ Modelling of the Mechanical and Mass Transport Properties of Auxetic Molecular Sieves: An Idealised Inorganic (Zeolitic) Host-Guest System,” Mol. Simul., 31(13), pp. 889–896. [CrossRef]
Alderson, A. , Davies, P. J. , Williams, M. R. , Evans, K. E. , Alderson, K. L. , and Grima, J. N. , 2005, “ Modelling of the Mechanical and Mass Transport Properties of Auxetic Molecular Sieves: An Idealised Organic (Polymeric Honeycomb) Host-Guest System,” Mol. Simul., 31(13), pp. 897–905. [CrossRef]
Lim, T. C. , and Acharya, R. U. , 2010, “ Performance Evaluation of Auxetic Molecular Sieves With Re-Entrant Structures,” J. Biomed. Nanotechnol., 6(6), pp. 718–724. [CrossRef] [PubMed]
Scarpa, F. , Giacomin, J. , Zhang, Y. , and Pastorino, P. , 2005, “ Mechanical Performance of Auxetic Polyurethane Foam for Antivibration Glove Applications,” Cell. Polym., 24(5), pp. 253–268.
Alderson, A. , and Alderson, K. , 2005, “ Expanding Materials and Application: Exploiting Auxetic Textiles,” Tech. Text. Int., 14(6), pp. 29–34.
Ge, Z. , Hu, H. , and Liu, Y. , 2013, “ A Finite Element Analysis of a 3D Auxetic Textile Structure for Composite Reinforcement,” Smart Mater. Struct., 22(8), p. 084005. [CrossRef]
Park, K. O. , Choi, J. B. , Lee, S. J. , Choi, H. H. , and Kim, J. K. , 2005, “ Polyurethane Foam With Negative Poisson's Ratio for Diabetic Shoe,” Key Eng. Mater., 288–289, pp. 677–680. [CrossRef]
Whitty, J. P. M. , Henderson, B. , Myler, P. , and Chirwa, C. , 2007, “ Crash Performance of Cellular Foams With Reduced Relative Density—Part 2: Rib Deletion,” Int. J. Crashworthiness, 12(6), pp. 689–698. [CrossRef]
Park, K. O. , Choi, J. B. , Park, J. C. , Park, D. J. , and Kim, J. K. , 2007, “ An Improvement in Shock Absorbing Behavior of Polyurethane Foam With a Negative Poisson Effect,” Key Eng. Mater., 342, pp. 845–848. [CrossRef]
Bianchi, M. M. , and Scarpa, F. , 2013, “ Vibration Transmissibility and Damping Behaviour for Auxetic and Conventional Foams Under Linear and Nonlinear Regimes,” Smart Mater. Struct., 22(8), p. 084010. [CrossRef]
Ma, Y. , Scarpa, F. , Zhang, D. , Zhu, B. , Chen, L. , and Hong, J. , 2013, “ A Nonlinear Auxetic Structural Vibration Damper With Metal Rubber Particles,” Smart Mater. Struct., 22(8), p. 084012. [CrossRef]
Alderson, A. , and Alderson, K. L. , 2007, “ Auxetic Materials,” J. Aerosp. Eng., 221(4), pp. 565–575.
Agnese, F. , Remillat, C. , Scarpa, F. , and Payne, C. , 2015, “ Composite Chiral Shear Vibration Damper,” Compos. Struct., 132, pp. 215–225. [CrossRef]
Airoldi, A. , Bettini, P. , Panichelli, P. , Oktem, M. F. , and Sala, G. , 2015, “ Chiral Topologies for Composites Morphing Structures—Part I: Development of a Chiral Rib for Deformable Airfoils,” Phys. Status Solidi B, 252(7), pp. 1435–1445. [CrossRef]
Lim, T. C. , 2015, “ Longitudinal Wave Velocity in Auxetic Rods,” ASME J. Eng. Mater. Technol., 137(2), p. 024502. [CrossRef]
Lim, T. C. , 2015, “ Shear Deformation in Beams With Negative Poisson's Ratio,” J. Mater.: Des. Appl., 229(6), pp. 447–454.
Lim, T. C. , 2014, “ Buckling and Vibration of Circular Auxetic Plates,” ASME J. Eng. Mater. Technol., 136(2), p. 021007. [CrossRef]
Lim, T. C. , 2014, “ Shear Deformation in Rectangular Auxetic Plates,” ASME J. Eng. Mater. Technol., 136(3), p. 031007. [CrossRef]
Lim, T. C. , 2016, “ Bending Stresses in Triangular Auxetic Plates,” ASME J. Eng. Mater. Technol., 138(1), p. 014501. [CrossRef]
Hencky, H. , 1915, “ On the Stress State in Circular Plates With Vanishing Bending Stiffness,” Z. Math. Phys., 63, pp. 311–317.
Campbell, J. D. , 1956, “ On the Theory of Initial Tensioned Circular Membranes Subjected to Uniform Pressure,” Q. J. Mech. Appl. Math., 9(1), pp. 84–93. [CrossRef]
Fichter, W. B. , 1997, “ Some Solutions for the Large Deflections of Uniformly Loaded Circular Membranes,” NASA Technical Paper No. 3658.
Fung, Y. C. , 1965, Foundations of Solid Mechanics, Prentice-Hall, Upper Saddle River, NJ.
Ting, T. C. T. , and Chen, T. , 2005, “ Poisson's Ratio for Anisotropic Elastic Materials Can Have No Bounds,” Q. J. Mech. Appl. Math., 58(1), pp. 73–82. [CrossRef]
Ting, T. C. T. , and Barnett, D. M. , 2005, “ Negative Poisson's Ratios in Anisotropic Linear Elastic Media,” ASME J. Appl. Mech., 72(6), pp. 929–931. [CrossRef]
Lim, T. C. , 2015, Auxetic Materials and Structures, Springer, Singapore.


Grahic Jump Location
Fig. 1

A circular membrane of thickness h and effective radius R with Young's modulus E and Poisson's ratio v (left) under a uniform load p (top right) and its corresponding deflection w (bottom right)

Grahic Jump Location
Fig. 2

Comparison of the truncated analytical deflection (dashed curve) and the semi-empirical deflection (continuous curve) against the exact analytical deflection (circles)

Grahic Jump Location
Fig. 3

Comparison between the dimensionless deflection distributions between the exact model (discrete data points) and the semi-empirical model (continuous curves) for (a) v=−1, −0.8, −0.6, −0.4, −0.2, 0, 0.2, and 0.4 and (b) v=−0.9, −0.7, −0.5, −0.3, −0.1, 0.1, 0.3, and 0.5

Grahic Jump Location
Fig. 4

Loci of dimensionless deflection versus dimensionless radial distance for the auxetic and conventional regions

Grahic Jump Location
Fig. 5

Plots of dimensionless maximum membrane deflection versus the dimensionless radial distance: (a) generic and specific semi-empirical results compared against exact solution and (b) percentage error of generic and specific semi-empirical with reference to the exact solution

Grahic Jump Location
Fig. 6

Comparison of the normalized deflection distributions between infinitesimal deformation theory of plates with the large deformation theory of membranes: (a) v=0.5, (b) v=0, (c) v=−0.5, and (d) v=−1



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In