Kachanov,
L.
, 1958, “
On the Creep Fracture Time,” Izv. Akad. Nauk. USSR Otd. Tech.,
8, pp. 26–31 (in Russian).

Lee,
H.
,
Peng,
K.
, and
Wang,
J.
, 1985, “
An Anisotropic Damage Criterion for Deformation Instability and Its Application to Forming Limit Analysis of Metal Plates,” Eng. Fract. Mech.,
21(5), pp. 1031–1054.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 1992, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part I: Theoretical Formulation,” Int. J. Eng. Sci.,
30(9), pp. 1089–1108.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2005, Damage Mechanics,
Taylor and Francis (CRC Press),
Boca Raton, FL.

Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2006, Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors, 2nd ed.,
Elsevier,
Amsterdam, The Netherlands.

Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2009, “
A Comparative Study of Damage Variables in Continuum Damage Mechanics,” Int. J. Damage Mech.,
18(4), pp. 315–340.

[CrossRef]
Sidoroff,
F.
, 1981, “
Description of Anisotropic Damage Application in Elasticity,” IUTAM Colloqium on Physical Nonlinearities in Structural Analysis, France, May 27–30,
Springer-Verlag,
Berlin, pp. 237–244.

Krajcinovic,
D.
, 1996, Damage Mechanics,
North Holland,
Amsterdam, The Netherlands, p. 776.

Kattan,
P. I.
, and
Voyiadjis,
G. Z.
, 1993, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part II: Applications to Finite Simple Shear,” Int. J. Eng. Sci.,
31(1), pp. 183–199.

[CrossRef]
Kattan,
P. I.
, and
Voyiadjis,
G. Z.
, 2001, “
Decomposition of Damage Tensor in Continuum Damage Mechanics,” ASCE J. Eng. Mech.,
127(9), pp. 940–944.

[CrossRef]
Kattan,
P. I.
, and
Voyiadjis,
G. Z.
, 2001, Damage Mechanics With Finite Elements: Practical Applications With Computer Tools,
Springer-Verlag,
Berlin.

Rabotnov,
Y.
, 1969, “
Creep Rupture,” Twelfth International Congress of Applied Mechanics,
M. Hetenyi
and
W. G. Vincenti
, eds.,
Stanford, CA,
Springer-Verlag, Berlin, pp. 342–349.

Ladeveze,
P.
, and
Lemaitre,
J.
, 1984, “
Damage Effective Stress in Quasi-Unilateral Conditions,” 16th International Congress of Theoretical and Applied Mechanics,
Lyngby,
Denmark.

Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2012, “
Mechanics of Damage Processes in Series and in Parallel: A Conceptual Framework,” Acta Mech.,
223(9), pp. 1863–1878.

[CrossRef]
Celentano,
D. J.
,
Tapia,
P. E.
, and
Chaboche,
J.-L.
, 2004, “
Experimental and Numerical Characterization of Damage Evolution in Steels,” Mec. Comput.,
23(10–11), pp. 1739–1762.

Doghri,
I.
, 2000, Mechanics of Deformable Solids: Linear and Nonlinear, Analytical and Computational Aspects,
Springer-Verlag,
Berlin.

Hansen,
N. R.
, and
Schreyer,
H. L.
, 1994, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage,” Int. J. Solids Struct.,
31(3), pp. 359–389.

[CrossRef]
Kattan,
P. I.
, and
Voyiadjis,
G. Z.
, 1990, “
A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity—Part I: Damage and Elastic Deformations,” Int. J. Eng. Sci.,
28(5), pp. 421–435.

[CrossRef]
Ladeveze,
P.
,
Poss,
M.
, and
Proslier,
L.
, 1982, “
Damage and Fracture of Tridirectional Composites,” Progress in Science and Engineering of Composites, Fourth International Conference on Composite Materials, Japan Society for Composite Materials, Vol.
1, pp. 649–658.

Lubineau,
G.
, 2010, “
A Pyramidal Modeling Scheme for Laminates—Identification of Transverse Cracking,” Int. J. Damage Mech.,
19(4), pp. 499–518.

[CrossRef]
Lubineau,
G.
, and
Ladeveze,
P.
, 2008, “
Construction of a Micromechanics-Based Intralaminar Mesomodel, and Illustrations in ABAQUS/Standard,” Comput. Mater. Sci.,
43(1), pp. 137–145.

[CrossRef]
Luccioni,
B.
, and
Oller,
S.
, 2003, “
A Directional Damage Model,” Comput. Methods Appl. Mech. Eng.,
192(9–10), pp. 1119–1145.

[CrossRef]
Rice,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity,” J. Mech. Phys. Solids,
19(6), pp. 433–455.

[CrossRef]
Voyiadjis,
G. Z.
, 1988, “
Degradation of Elastic Modulus in Elastoplastic Coupling With Finite Strains,” Int. J. Plast.,
4(4), pp. 335–353.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 1990, “
A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity—Part II: Damage and Finite Strain Plasticity,” Int. J. Eng. Sci.,
28(6), pp. 505–524.

[CrossRef]
Basaran,
C.
, and
Yan,
C. Y.
, 1998, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints,” ASME J. Electron. Packag.,
120(4), pp. 379–384.

[CrossRef]
Basaran,
C.
, and
Nie,
S.
, 2004, “
An Irreversible Thermodynamic Theory for Damage Mechanics of Solids,” Int. J. Damage Mech.,
13(3), pp. 205–224.

[CrossRef]
Cai,
M.
, and
Horii,
H.
, 1992, “
A Constitutive Model of Highly Jointed Rock Masses,” Mech. Mater.,
13(3), pp. 217–246.

[CrossRef]
Nichols,
J. M.
, and
Abell,
A. B.
, 2003, “
Implementing the Degrading Effective Stiffness of Masonry in a Finite Element Model,” North American Masonry Conference, Clemson, SC.

Nichols,
J. M.
, and
Totoev,
Y. Z.
, 1999, “
Experimental Investigation of the Damage Mechanics of Masonry Under Dynamic In-Plane Loads,” North American Masonry Conference, Austin, TX.

Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2012, “
A New Class of Damage Variables in Continuum Damage Mechanics,” ASME J. Mater. Technol,
134(2), p. 021016.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2012, “
On the Theory of Elastic Undamageable Materials,” ASME J. Mater. Technol.,
135(2), p. 021002.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2013, “
Introduction to the Mechanics and Design of Undamageable Materials,” Int. J. Damage Mech.,
22(3), pp. 323–335.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2014, “
Healing and Super Healing in Continuum Damage Mechanics,” Int. J. Damage Mech.,
23(2), pp. 245–260.

[CrossRef]
Voyiadjis,
G. Z.
, and
Kattan,
P. I.
, 2014, “
Governing Differential Equations for the Mechanics of Undamageable Materials,” Eng. Trans.,
62(3), pp. 241–267.

Gurson,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part 1: Yield Criteria and Flow Rules for Porous Ductile Media,” Int. J. Eng. Mater. Technol.,
99(2), pp. 2–15.

[CrossRef]