Research Papers

Synthesis and Characterization of Dielectric Elastomer Nanocomposites Filled With Multiwalled Carbon Nanotubes

[+] Author and Article Information
Yu Wang

Department of Chemical Engineering
and Materials Science,
University of California,
Irvine, CA 92697

L. Z. Sun

Department of Chemical Engineering
and Materials Science;
Department of Civil
and Environmental Engineering,
University of California,
Irvine, CA 92697
e-mail: lsun@uci.edu

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 10, 2016; final manuscript received September 14, 2016; published online February 9, 2017. Assoc. Editor: Xi Chen.

J. Eng. Mater. Technol 139(2), 021018 (Feb 09, 2017) (8 pages) Paper No: MATS-16-1177; doi: 10.1115/1.4035490 History: Received June 10, 2016; Revised September 14, 2016

Dielectric elastomers (DEs) have been attracting great attention in the field of electro-mechanical actuation and sensing. In this paper, we develop a new type of silicone-based DEs by incorporating multiwalled carbon nanotubes (MWNTs) to the DEs as fillers. The dispersion of MWNTs during the material processing plays a significant role in deciding the final properties of the nanocomposites. In this work, acetone and ultrasonication along with characterization tools such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are utilized to examine the MWNT dispersion quality within DE nanocomposites. Furthermore, microstructural MWNT dispersion and filler–matrix interfacial bonding as well as the overall dynamic mechanical responses are investigated to reveal the correlation between them. It is concluded that the processing of DE nanocomposites strongly affects the dynamic mechanical properties, which can inversely provide with microstructural information for the nanocomposites.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Hou, Y. , Tang, J. , Zhang, H. B. , Qian, C. , Feng, Y. Y. , and Liu, J. , 2009, “ Functionalized Few-Walled Carbon Nanotubes for Mechanical Reinforcement of Polymeric Composites,” ACS Nano, 3(5), pp. 1057–1062. [CrossRef] [PubMed]
Huang, Y. Y. , and Terentjev, E. M. , 2010, “ Tailoring the Electrical Properties of Carbon Nanotube-Polymer Composites,” Adv. Funct. Mater., 20(23), pp. 4062–4068. [CrossRef]
Xu, X. J. , Thwe, M. M. , Shearwood, C. , and Liao, K. , 2002, “ Mechanical Properties and Interfacial Characteristics of Carbon-Nanotube-Reinforced Epoxy Thin Films,” Appl. Phys. Lett., 81(15), pp. 2833–2835. [CrossRef]
Coleman, J. N. , Khan, U. , Blau, W. J. , and Gun'ko, Y. K. , 2006, “ Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites,” Carbon, 44(9), pp. 1624–1652. [CrossRef]
Shao, L. H. , Luo, R. Y. , Bai, S. L. , and Wang, J. , 2009, “ Prediction of Effective Moduli of Carbon Nanotube-Reinforced Composites With Waviness and Debonding,” Compos. Struct., 87(3), pp. 274–281. [CrossRef]
Bhuiyan, M. A. , Pucha, R. V. , Karevan, M. , and Kalaitzidou, K. , 2011, “ Tensile Modulus of Carbon Nanotube/Polypropylene Composites–A Computational Study Based on Experimental Characterization,” Comput. Mater. Sci., 50(8), pp. 2347–2353. [CrossRef]
Koh, S. J. A. , Zhao, X. , and Suo, Z. , 2009, “ Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator,” Appl. Phys. Lett., 94(26), p. 262902. [CrossRef]
Brochu, P. , and Pei, Q. , 2010, “ Advances in Dielectric Elastomers for Actuators and Artificial Muscles,” Macromol. Rapid Commun., 31(1), pp. 10–36. [CrossRef] [PubMed]
Pelrine, R. , Kornbluh, R. , Joseph, J. , Heydt, R. , Pei, Q. B. , and Chiba, S. , 2000, “ High-Field Deformation of Elastomeric Dielectrics for Actuators,” Mater. Sci. Eng., C, 11(2), pp. 89–100. [CrossRef]
Kang, G. , Kim, K.-S. , and Kim, S. , 2011, “ Note: Analysis of the Efficiency of a Dielectric Elastomer Generator for Energy Harvesting,” Rev. Sci. Instrum., 82(4), p. 046101. [CrossRef] [PubMed]
O'Halloran, A. , O'Malley, F. , and McHugh, P. , 2008, “ A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges,” J. Appl. Phys., 104(7), p. 071101. [CrossRef]
Anderson, I. A. , Gisby, T. A. , McKay, T. G. , O'Brien, B. M. , and Calius, E. P. , 2012, “ Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines,” J. Appl. Phys., 112(4), p. 041101. [CrossRef]
Pelrine, R. , 2000, “ High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,” Science, 287(5454), pp. 836–839. [CrossRef] [PubMed]
Pelrine, R. , Sommer-Larsen, P. , Kornbluh, R. , Heydt, R. , Kofod, G. , Pei, Q. B. , and Gravesen, P. , 2001, “ Applications of Dielectric Elastomer Actuators,” Proc. SPIE, 4329, pp. 335–349.
O'Brien, B. M. , Calius, E. P. , Inamura, T. , Xie, S. Q. , and Anderson, I. A. , 2010, “ Dielectric Elastomer Switches for Smart Artificial Muscles,” Appl. Phys. A, 100(2), pp. 385–389. [CrossRef]
Wang, L. , and Dang, Z. M. , 2005, “ Carbon Nanotube Composites With High Dielectric Constant at Low Percolation Threshold,” Appl. Phys. Lett., 87(4), p. 042903. [CrossRef]
Basu, R. , and Iannacchione, G. S. , 2008, “ Dielectric Response of Multiwalled Carbon Nanotubes as a Function of Applied AC-Electric Fields,” J. Appl. Phys., 104(11), p. 114107. [CrossRef]
Dang, Z. M. , Wang, L. , Yin, Y. , Zhang, Q. , and Lei, Q. Q. , 2007, “ Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites,” Adv. Mater., 19(6), pp. 852–857. [CrossRef]
Galantini, F. , Bianchi, S. , Castelvetro, V. , and Gallone, G. , 2013, “ Functionalized Carbon Nanotubes as a Filler for Dielectric Elastomer Composites With Improved Actuation Performance,” Smart Mater. Struct., 22(5), p. 055025. [CrossRef]
Wang, Y. , Kim, S. , Li, G. P. , and Sun, L. Z. , 2015, “ Filler Orientation Effect on Relative Permittivity of Dielectric Elastomer Nanocomposites Filled With Carbon Nanotubes,” Comput. Mater. Sci., 104, pp. 69–75. [CrossRef]
Pötschke, P. , Dudkin, S. M. , and Alig, I. , 2003, “ Dielectric Spectroscopy on Melt Processed Polycarbonate—Multiwalled Carbon Nanotube Composites,” Polymer, 44(17), pp. 5023–5030. [CrossRef]
Dang, Z. M. , Wang, L. , Yin, Y. , Zhang, Q. , and Lei, Q. Q. , 2007, “ Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites,” Adv. Mater., 19(6), pp. 852–857. [CrossRef]
Underhill, R. S. , and Michalchuk, B. W. , 2005, Carbon Nanotube-Elastomer Composites for Use in Dielectric Polymer Actuators, IEEE Computer Society, Los Alamitos, CA.
Ouyang, G. , Wang, K. , and Chen, X. Y. , 2012, “ TiO2 Nanoparticles Modified Polydimethylsiloxane With Fast Response Time and Increased Dielectric Constant,” J. Micromech. Microeng., 22(7), p. 074002. [CrossRef]
Huang, X. , Xie, L. , Hu, Z. , and Jiang, P. , 2011, “ Influence of BaTiO3 Nanoparticles on Dielectric, Thermophysical and Mechanical Properties of Ethylene-Vinyl Acetate Elastomer/BaTiO3 Microcomposites,” IEEE Trans. Dielectr. Electr. Insul., 18(2), pp. 375–383. [CrossRef]
Wang, Z. P. , Nelson, J. K. , Hillborg, H. , Zhao, S. , and Schadler, L. S. , 2013, “ Dielectric Constant and Breakdown Strength of Polymer Composites With High Aspect Ratio Fillers Studied by Finite Element Models,” Compos. Sci. Technol., 76, pp. 29–36. [CrossRef]
Yang, D. , Tian, M. , Dong, Y. , Kang, H. , Gong, D. , and Zhang, L. , 2013, “ A High-Performance Dielectric Elastomer Consisting of Bio-Based Polyester Elastomer and Titanium Dioxide Powder,” J. Appl. Phys., 114(15), p. 154104. [CrossRef]
Gallone, G. , Carpi, F. , De Rossi, D. , Levita, G. , and Marchetti, A. , 2007, “ Dielectric Constant Enhancement in a Silicone Elastomer Filled With Lead Magnesium Niobate–Lead Titanate,” Mater. Sci. Eng., C, 27(1), pp. 110–116. [CrossRef]
Bai, Y. , Cheng, Z. Y. , Bharti, V. , Xu, H. S. , and Zhang, Q. M. , 2000, “ High-Dielectric-Constant Ceramic-Powder Polymer Composites,” Appl. Phys. Lett., 76(25), pp. 3804–3806. [CrossRef]
Shi, S. L. , and Liang, J. , 2006, “ Effect of Multiwall Carbon Nanotubes on Electrical and Dielectric Properties of Yttria-Stabilized Zirconia Ceramic,” J. Am. Ceram. Soc., 89(11), pp. 3533–3535. [CrossRef]
Iwamoto, M. , 2012, Maxwell–Wagner Effect, Springer, Dordrecht, The Netherlands.
Tchmutin, I. A. , Ponomarenko, A. T. , Shevchenko, V. G. , Ryvkina, N. G. , Klason, C. , and McQueen, D. H. , 1998, “ Electrical Transport in 0-3 Epoxy Resin Barium Titanate Carbon Black Polymer Composites,” J. Polym. Sci., Part B: Polym. Phys., 36(11), pp. 1847–1856. [CrossRef]
Montazeri, A. , and Chitsazzadeh, M. , 2014, “ Effect of Sonication Parameters on the Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites,” Mater. Des., 56, pp. 500–508. [CrossRef]
Sun, L. , Warren, G. L. , O'Reilly, J. Y. , Everett, W. N. , Lee, S. M. , Davis, D. , Lagoudas, D. , and Sue, H.-J. , 2008, “ Mechanical Properties of Surface-Functionalized SWCNT/Epoxy Composites,” Carbon, 46(2), pp. 320–328. [CrossRef]
Riggs, J. E. , Guo, Z. X. , Carroll, D. L. , and Sun, Y. P. , 2000, “ Strong Luminescence of Solubilized Carbon Nanotubes,” J. Am. Chem. Soc., 122(24), pp. 5879–5880. [CrossRef]
Paiva, M. C. , Zhou, B. , Fernando, K. A. S. , Lin, Y. , Kennedy, J. M. , and Sun, Y. P. , 2004, “ Mechanical and Morphological Characterization of Polymer-Carbon Nanocomposites From Functionalized Carbon Nanotubes,” Carbon, 42(14), pp. 2849–2854. [CrossRef]
Qu, L. W. , Lin, Y. , Hill, D. E. , Zhou, B. , Wang, W. , Sun, X. F. , Kitaygorodskiy, A. , Suarez, M. , Connell, J. W. , Allard, L. F. , and Sun, Y.-P. , 2004, “ Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films,” Macromolecules, 37(16), pp. 6055–6060. [CrossRef]
Mitchell, C. A. , Bahr, J. L. , Arepalli, S. , Tour, J. M. , and Krishnamoorti, R. , 2002, “ Dispersion of Functionalized Carbon Nanotubes in Polystyrene,” Macromolecules, 35(23), pp. 8825–8830. [CrossRef]
Zeng, H. L. , Gao, C. , and Yan, D. Y. , 2006, “ Poly(Epsilon-Caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties,” Adv. Funct. Mater., 16(6), pp. 812–818. [CrossRef]
Zhang, L. , Ni, Q. Q. , Natsuki, T. , and Fu, Y. Q. , 2009, “ Carbon Nanotubes/Magnetite Hybrids Prepared by a Facile Synthesis Process and Their Magnetic Properties,” Appl. Surf. Sci., 255(20), pp. 8676–8681. [CrossRef]
Shih, Y.-H. , and Li, M.-S. , 2008, “ Adsorption of Selected Volatile Organic Vapors on Multiwall Carbon Nanotubes,” J. Hazard. Mater., 154(1–3), pp. 21–28. [CrossRef] [PubMed]
Xie, X. L. , Mai, Y. W. , and Zhou, X. P. , 2005, “ Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review,” Mater. Sci. Eng., R, 49(4), pp. 89–112. [CrossRef]
Ryszkowska, J. , Jurczyk-Kowalska, M. , Szymborski, T. , and Kurzydlowski, K. J. , 2007, “ Dispersion of Carbon Nanotubes in Polyurethane Matrix,” Phys. E, 39(1), pp. 124–127. [CrossRef]
Varela-Rizo, H. , Rodriguez-Pastor, I. , and Martin-Gullon, I. , 2012, “ Effect of Solvent Nature in Casting-Based Carbon Nanofiber/Poly(Methyl-Methacrylate) Nanocomposites,” J. Appl. Polym. Sci., 125(4), pp. 3228–3238. [CrossRef]
Kazachkin, D. , Nishimura, Y. , Irle, S. , Morokuma, K. , Vidic, R. D. , and Borguet, E. , 2008, “ Interaction of Acetone With Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed Desorption and Theoretical Study,” Langmuir, 24(15), pp. 7848–7856. [CrossRef] [PubMed]
Lee, C. U. , and Dadmun, M. D. , 2008, “ Improving the Dispersion and Interfaces in Polymer-Carbon Nanotube Nanocomposites by Sample Preparation Choice,” J. Polym. Sci., Part B: Polym. Phys., 46(16), pp. 1747–1759. [CrossRef]
Liao, Y. H. , Marietta-Tondin, O. , Liang, Z. Y. , Zhang, C. , and Wang, B. , 2004, “ Investigation of the Dispersion Process of SWNTs/SC-15 Epoxy Resin Nanocomposites,” Mater. Sci. Eng., A, 385(1–2), pp. 175–181. [CrossRef]
Lau, K. T. , Lu, M. , Lam, C. K. , Cheung, H. Y. , Sheng, F. L. , and Li, H. L. , 2005, “ Thermal and Mechanical Properties of Single-Walled Carbon Nanotube Bundle-Reinforced Epoxy Nanocomposites: The Role of Solvent for Nanotube Dispersion,” Compos. Sci. Technol., 65(5), pp. 719–725. [CrossRef]
Li, R. , and Sun, L. Z. , 2011, “ Dynamic Mechanical Behavior of Magnetorheological Nanocomposites Filled With Carbon Nanotubes,” Appl. Phys. Lett., 99(13), p. 131912. [CrossRef]
Fiedler, B. , Gojny, F. H. , Wichmann, M. H. G. , Nolte, M. C. M. , and Schulte, K. , 2006, “ Fundamental Aspects of Nano-Reinforced Composites,” Compos. Sci. Technol., 66(16), pp. 3115–3125. [CrossRef]
Lu, K. L. , Lago, R. M. , Chen, Y. K. , Green, M. L. H. , Harris, P. J. F. , and Tsang, S. C. , 1996, “ Mechanical Damage of Carbon Nanotubes by Ultrasound,” Carbon, 34(6), pp. 814–816. [CrossRef]
Bai, J. B. , and Allaoui, A. , 2003, “ Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites-Experimental Investigation,” Compos., Part A, 34(8), pp. 689–694. [CrossRef]
Qian, D. , Dickey, E. C. , Andrews, R. , and Rantell, T. , 2000, “ Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett., 76(20), pp. 2868–2870. [CrossRef]
Breuer, O. , and Sundararaj, U. , 2004, “ Big Returns From Small Fibers: A Review of Polymer/Carbon Nanotube Composites,” Polym. Compos., 25(6), pp. 630–645. [CrossRef]
Li, R. , and Sun, L. Z. , 2013, “ Viscoelastic Responses of Silicone-Rubber-Based Magnetorheological Elastomers Under Compressive and Shear Loadings,” ASME J. Eng. Mater. Technol., 135(2), p. 021008. [CrossRef]
Fisher, F. T. , Bradshaw, R. D. , and Brinson, L. C. , 2003, “ Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties,” Compos. Sci. Technol., 63(11), pp. 1689–1703. [CrossRef]
Bradshaw, R. D. , Fisher, F. T. , and Brinson, L. C. , 2003, “ Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling Via Numerical Approximation of the Dilute Strain Concentration Tensor,” Compos. Sci. Technol., 63(11), pp. 1705–1722. [CrossRef]


Grahic Jump Location
Fig. 6

(a) SEM images of nanocomposites with 0.3 wt.% MWNTs processed with acetone with 0.5 h ultrasonication treatment and (b) zoomed in view of the box in (a)

Grahic Jump Location
Fig. 7

(a) SEM images of nanocomposites with 0.3 wt.% MWNTs processed with acetone with 4.0 h ultrasonication treatment and (b) zoomed in view of the box in (a)

Grahic Jump Location
Fig. 5

(a) SEM images of nanocomposites with 0.3 wt.% MWNTs processed with acetone without ultrasonication treatment and (b) zoomed in view of the box in (a)

Grahic Jump Location
Fig. 4

(a) SEM images of nanocomposites with 0.3 wt.% MWNTs processed with acetone and (b) zoomed in view of the box in (a)

Grahic Jump Location
Fig. 3

(a) SEM images of nanocomposites with 0.3 wt.% MWNTs processed without acetone and (b) zoomed in view of the box in (a)

Grahic Jump Location
Fig. 2

SEM micrograph of pristine MWNTs before the processing: (a) and (b) aggregates of MWNTs, (c) zoomed in view of the box in (b). Each individual MWNT can be seen from the aggregates in (c).

Grahic Jump Location
Fig. 1

DE nanocomposite processing steps

Grahic Jump Location
Fig. 8

TEM images of MWNTs processed with acetone and 4.0 h ultrasonication treatment. (a)–(c) show different MWNTs.

Grahic Jump Location
Fig. 9

Dynamic strain sweeps of DE nanocomposites filled with 0.3 wt.% MWNTs processed with acetone and ultrasonication: (a) storage moduli, (b) loss moduli, and (c) loss factors under compression loading. The test frequency is 10 Hz.

Grahic Jump Location
Fig. 10

Schematic image of the dispersion of MWNTs in DE nanocomposites



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In