Technical Brief

Mechanical Behavior of Carbon Nanotube Forests Grown With Plasma Enhanced Chemical Vapor Deposition: Pristine and Conformally Coated

[+] Author and Article Information
Parisa Pour Shahid Saeed Abadi

Department of Medicine,
Brigham and Women's Hospital,
Harvard Medical School,
65 Landsdowne Street,
Cambridge, MA 02139
e-mails: ppourshahidsaeedabadi@bwh.harvard.edu; pourshahid@gmail.com

Matthew R. Maschmann

Air Force Research Laboratory,
Materials and Manufacturing Directorate,
Composites Branch,
Wright-Patterson Air Force Base, OH 45433;
Universal Technology Corporation,
Beavercreek, OH 45432;
Department of Mechanical and Aerospace Engineering,
University of Missouri,
Columbia, MO 65211

Stephen L. Hodson, Timothy S. Fisher

School of Mechanical Engineering;Birck Nanotechnology Center,
Purdue University,
West Lafayette, IN 47907

Jeffery W. Baur

Air Force Research Laboratory,
Materials and Manufacturing Directorate,
Composites Branch,
Wright-Patterson Air Force Base, OH 45433

Samuel Graham, Baratunde A. Cola

George W. Woodruff School of Mechanical Engineering;School of Materials Science and Engineering,
Georgia Institute of Technology,
771 Ferst Drive,
Atlanta, GA 30332

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 28, 2015; final manuscript received November 24, 2016; published online March 23, 2017. Assoc. Editor: Ashraf Bastawros.This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government's contributions.

J. Eng. Mater. Technol 139(3), 034502 (Mar 23, 2017) (5 pages) Paper No: MATS-15-1149; doi: 10.1115/1.4035622 History: Received June 28, 2015; Revised November 24, 2016

Plasma-enhanced chemical vapor deposition (PECVD) is a well-known method for the synthesis of carbon nanotube (CNT) forests with the electric field in the plasma sheath being responsible for the vertical orientation of CNTs. Here, we investigate the deformation mechanism and mechanical properties of pristine and conformally coated PECVD CNT forests under compressive loading. Our in situ indentation experiments reveal that local buckles form along the height of pristine CNTs progressing downward from the starting point at the tips. For CNT forests coated from their roots to top with alumina using atomic layer deposition (ALD), the deformation mechanism depends strongly on the coating thickness. The buckling behavior does not change significantly when the coating is 5-nm thick. However, with a 10-nm-thick coating, the nanotubes fracture—that is, at both the CNT core and alumina coating. Ex situ indentation experiments with a flat punch reveal 8- and 22-fold increase in stiffness with the 5- and 10-nm coating, respectively. Comparing the behavior of the PECVD forests with CNTs grown with thermal chemical vapor deposition (CVD) shows that the mechanical behavior of PECVD CNTs depends on their characteristic morphology caused by the growth parameters including plasma. Our findings could serve as guidelines for tailoring the properties of CNT structures for various applications in which CNT compliance or deformation plays a critical role.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Cola, B. A. , Xu, J. , and Fisher, T. S. , 2009, “ Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces,” Int. J. Heat Mass Transfer, 52(15–16), pp. 3490–3503. [CrossRef]
Nguyen, J. J. , Bougher, T. L. , Abadi, P. P. S. S. , Sharma, A. , Graham, S. , and Cola, B. A. , 2013, “ Postgrowth Microwave Treatment to Align Carbon Nanotubes,” ASME J. Micro Nano-Manuf., 1(1), p. 014501. [CrossRef]
Lin, W. , Shang, J. T. , Gu, W. T. , and Wong, C. P. , 2012, “ Parametric Study of Intrinsic Thermal Transport in Vertically Aligned Multi-Walled Carbon Nanotubes Using a Laser Flash Technique,” Carbon, 50(4), pp. 1591–1603. [CrossRef]
Pathak, S. , Lim, E. J. , Abadi, P. P. S. S. , Graham, S. , Cola, B. A. , and Greer, J. R. , 2012, “ Higher Recovery and Better Energy Dissipation at Faster Strain Rates in Carbon Nanotube Bundles: An In-Situ Study,” ACS Nano, 6(3), pp. 2189–2197. [CrossRef] [PubMed]
Maschmann, M. R. , Dickinson, B. , Ehlert, G. J. , and Baur, J. W. , 2012, “ Force Sensitive Carbon Nanotube Arrays for Biologically Inspired Airflow Sensing,” Smart Mater. Struct., 21(9), p. 094024. [CrossRef]
Ehlert, G. J. , Maschmann, M. R. , and Baur, J. W. , 2011, “ Electromechanical Behavior of Aligned Carbon Nanotube Arrays for Bio-Inspired Fluid Flow Sensors,” Proc. SPIE 7977, p. 79771C.
Abadi, P. P. S. S. , Hutchens, S. B. , Greer, J. R. , Cola, B. A. , and Graham, S. , 2012, “ Effects of Morphology on the Micro-Compression Response of Carbon Nanotube Forests,” Nanoscale, 4(11), p. 8.
Pathak, S. , Mohan, N. , Decolvenaere, E. , Needleman, A. , Bedewy, M. , Hart, A. J. , and Greer, J. R. , 2013, “ Local Relative Density Modulates Failure and Strength in Vertically Aligned Carbon Nanotubes,” ACS Nano, 7(10), pp. 8593–8604. [CrossRef] [PubMed]
Cao, A. Y. , Dickrell, P. L. , Sawyer, W. G. , Ghasemi-Nejhad, M. N. , and Ajayan, P. M. , 2005, “ Super-Compressible Foamlike Carbon Nanotube Films,” Science, 310(5752), pp. 1307–1310. [CrossRef] [PubMed]
Maschmann, M. R. , Zhang, Q. , Wheeler, R. , Du, F. , Dai, L. , and Baur, J. , 2011, “ In Situ SEM Observation of Column-Like and Foam-Like CNT Array Nanoindentation,” ACS Appl. Mater. Interfaces, 3(3), pp. 648–653. [CrossRef] [PubMed]
Maschmann, M. R. , Zhang, Q. H. , Du, F. , Dai, L. M. , and Baur, J. , 2011, “ Length Dependent Foam-Like Mechanical Response of Axially Indented Vertically Oriented Carbon Nanotube Arrays,” Carbon, 49(2), pp. 386–397. [CrossRef]
Hutchens, S. B. , Hall, L. J. , and Greer, J. R. , 2010, “ In Situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles,” Adv. Funct. Mater., 20(14), pp. 2338–2346. [CrossRef]
Lu, Y. C. , Joseph, J. , Maschmann, M. R. , Dai, L. , and Baur, J. , 2013, “ Rate-Dependent, Large-Displacement Deformation of Vertically Aligned Carbon Nanotube Arrays,” Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Vol. 2, B. Antoun , H. J. Qi , R. Hall , G. P. Tandon , H. Lu , and C. Lu , eds., Springer, New York, pp. 101–107.
Qiu, A. , Bahr, D. F. , Zbib, A. A. , Bellou, A. , Mesarovic, S. D. , McClain, D. , Hudson, W. , Jiao, J. , Kiener, D. , and Cordill, M. J. , 2011, “ Local and Non-Local Behavior and Coordinated Buckling of CNT Turfs,” Carbon, 49(4), pp. 1430–1438. [CrossRef]
Maschmann, M. R. , Ehlert, G. J. , Park, S. J. , Mollenhauer, D. , Maruyama, B. , Hart, A. J. , and Baur, J. W. , 2012, “ Visualizing Strain Evolution and Coordinated Buckling Within CNT Arrays by In Situ Digital Image Correlation,” Adv. Funct. Mater., 22(22), pp. 4686–4695. [CrossRef]
Zbib, A. , Mesarovic, S. D. , Lilleodden, E. , McClain, D. , Jiao, J. , and Bahr, D. , 2008, “ The Coordinated Buckling of Carbon Nanotube Turfs Under Uniform Compression,” Nanotechnology, 19(17), p. 175704. [CrossRef] [PubMed]
Mesarovic, S. D. , McCarter, C. M. , Bahr, D. F. , Radhakrishnan, H. , Richards, R. F. , Richards, C. D. , McClain, D. , and Jiao, J. , 2007, “ Mechanical Behavior of a Carbon Nanotube Turf,” Scr. Mater., 56(2), pp. 157–160. [CrossRef]
McCarter, C. M. , Richards, R. F. , Mesarovic, S. D. , Richards, C. D. , Bahr, D. F. , McClain, D. , and Jiao, J. , 2006, “ Mechanical Compliance of Photolithographically Defined Vertically Aligned Carbon Nanotube Turf,” J. Mater. Sci., 41(23), pp. 7872–7878. [CrossRef]
Qiu, A. , and Bahr, D. F. , 2013, “ The Role of Density in the Mechanical Response of CNT Turfs,” Carbon, 55, pp. 335–342. [CrossRef]
Abadi, P. P. S. S. , Hutchens, S. B. , Greer, J. R. , Cola, B. A. , and Graham, S. , 2013, “ Buckling-Driven Delamination of Carbon Nanotube Forests,” Appl. Phys. Lett., 102(22), p. 223103. [CrossRef]
Abadi, P. P. S. S. , Maschmann, M. R. , Baur, J. W. , Graham, S. , and Cola, B. A. , 2013, “ Deformation Response of Conformally Coated Carbon Nanotube Forests,” Nanotechnology, 24(47), p. 475707. [CrossRef] [PubMed]
Abadi, P. P. S. S. , Maschmann, M. R. , Mortuza, S. M. , Banerjee, S. , Baur, J. W. , Graham, S. , and Cola, B. A. , 2014, “ Reversible Tailoring of Mechanical Properties of Carbon Nanotube Forests by Immersing in Solvents,” Carbon, 69, pp. 178–187. [CrossRef]
Hofmann, S. , Ducati, C. , Robertson, J. , and Kleinsorge, B. , 2003, “ Low-Temperature Growth of Carbon Nanotubes by Plasma-Enhanced Chemical Vapor Deposition,” Appl. Phys. Lett., 83(1), pp. 135–137. [CrossRef]
Meyyappan, M. , Delzeit, L. , Cassell, A. , and Hash, D. , 2003, “ Carbon Nanotube Growth by PECVD: A Review,” Plasma Sources Sci. Technol., 12(2), pp. 205–216. [CrossRef]
Teo, K. B. K. , Hash, D. B. , Lacerda, R. G. , Rupesinghe, N. L. , Bell, M. S. , Dalal, S. H. , Bose, D. , Govindan, T. R. , Cruden, B. A. , Chhowalla, M. , Amaratunga, G. A. J. , Meyyappan, M. , and Milne, W. I. , 2004, “ The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth,” Nano Lett., 4(5), pp. 921–926. [CrossRef]
Chhowalla, M. , Teo, K. B. K. , Ducati, C. , Rupesinghe, N. L. , Amaratunga, G. A. J. , Ferrari, A. C. , Roy, D. , Robertson, J. , and Milne, W. I. , 2001, “ Growth Process Conditions of Vertically Aligned Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys., 90(10), pp. 5308–5317. [CrossRef]
Milne, W. I. , Teo, K. B. K. , Amaratunga, G. A. J. , Legagneux, P. , Gangloff, L. , Schnell, J. P. , Semet, V. , Binh, V. T. , and Groening, O. , 2004, “ Carbon Nanotubes as Field Emission Sources,” J. Mater. Chem., 14(6), pp. 933–943. [CrossRef]
Xu, J. , and Fisher, T. S. , 2006, “ Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays,” Int. J. Heat Mass Transfer, 49(9–10), pp. 1658–1666. [CrossRef]
Khanikar, V. , Mudawar, I. , and Fisher, T. , 2009, “ Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel,” Int. J. Heat Mass Transfer, 52(15–16), pp. 3805–3817. [CrossRef]
Guillorn, M. A. , Melechko, A. V. , Merkulov, V. I. , Hensley, D. K. , Simpson, M. L. , and Lowndes, D. H. , 2002, “ Self-Aligned Gated Field Emission Devices Using Single Carbon Nanofiber Cathodes,” Appl. Phys. Lett., 81(19), pp. 3660–3662. [CrossRef]
Koehne, J. , Chen, H. , Li, J. , Cassell, A. M. , Ye, Q. , Ng, H. T. , Han, J. , and Meyyappan, M. , 2003, “ Ultrasensitive Label-Free DNA Analysis Using an Electronic Chip Based on Carbon Nanotube Nanoelectrode Arrays,” Nanotechnology, 14(12), p. 1239. [CrossRef] [PubMed]
Flicker, J. , and Ready, W. J. , 2014, “ Texturing of Polycrystalline Photovoltaic Materials Using Vertically Aligned Carbon Nanotube Arrays,” Prog. Photovoltaics: Res. Appl., 22(6), pp. 634–640. [CrossRef]
Hamdan, A. , Cho, J. , Johnson, R. , Jiao, J. , Bahr, D. , Richards, R. , and Richards, C. , 2010, “ Evaluation of a Thermal Interface Material Fabricated Using Thermocompression Bonding of Carbon Nanotube Turf,” Nanotechnology, 21(1), p. 015702. [CrossRef] [PubMed]
Cui, H. , Zhou, O. , and Stoner, B. R. , 2000, “ Deposition of Aligned Bamboo-Like Carbon Nanotubes Via Microwave Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys., 88(10), pp. 6072–6074. [CrossRef]


Grahic Jump Location
Fig. 2

Indentation of the MPCVD forest: (a) indenter touching the surface, (b) the CNT tips are bent/buckled, (c) and (d) a second buckle is formed under the first one, (e) maximum deformation of CNTs, and (f) recovered CNT forest after unloading. The schematics on the right side of the images show the side view of the buckles.

Grahic Jump Location
Fig. 1

Micro‐ and nano‐structure of PECVD CNTs: (a) an SEM micrograph illustrating the entire height of the forest, the growth substrate, and the free CNT tips, (b) a magnified SEM micrograph showing more clearly the individual CNTs and the degree of alignment and entanglement, and (c) a TEM micrograph illustrating the nanostructure of the individual CNTs and an inset showing schematically the bamboo structure

Grahic Jump Location
Fig. 3

Structure of PECVD CNTs coated with ALD alumina in SEM micrographs: (a) low magnification micrograph illustrating the entire height of a forest coated by 100 cycles, (b) and (c) high magnification micrograph of a CNT forest coated by 50 and 100 ALD cycles, respectively

Grahic Jump Location
Fig. 4

Comparison of deformations in indentation of uncoated and coated MPCVD CNT forests: (a)–(c) uncoated, (d)–(f) coated with 5 nm of ALD alumina, and (g)–(i) coated with 10 nm of ALD alumina. Left column: middle of loading, middle column: end of loading, and right column: end of unloading.

Grahic Jump Location
Fig. 5

Comparison of typical indentation load-depth curves for MPCVD CNT forests in the uncoated condition and coated with 5 and 10 nm of ALD alumina



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In