Research Papers

On Thermodynamic Consistency of Homogenization-Based Multiscale Theories

[+] Author and Article Information
Felipe Lopez Rivarola

Facultad de Ingeniería,
Universidad de Buenos Aires,
Av. Las Heras 2214,
Buenos Aires C1127AAR, Argentina
e-mail: flopez@fi.uba.ar

Guillermo Etse

Department of “Construcciones y Estructuras,”
Facultad de Ingenieria,
Universidad de Buenos Aires,
Buenos Aires C1127AAR, Argentina
e-mail: getse@herrera.unt.edu.ar

Paula Folino

Facultad de Ingeniería,
Universidad de Buenos Aires,
Av. Las Heras 2214,
Buenos Aires C1127AAR, Argentina
e-mail: pfolino@fi.uba.ar

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received November 1, 2016; final manuscript received February 22, 2017; published online May 12, 2017. Assoc. Editor: Peter W. Chung.

J. Eng. Mater. Technol 139(3), 031011 (May 12, 2017) (9 pages) Paper No: MATS-16-1314; doi: 10.1115/1.4036243 History: Received November 01, 2016; Revised February 22, 2017

In this paper, the necessary and sufficient conditions for fulfilling the thermodynamic consistency of computational homogenization schemes in the framework of hierarchical multiscale theories are defined. The proposal is valid for arbitrary homogenization based multiscale procedures, including continuum and discontinuum methods in either scale. It is demonstrated that the well-known Hill–Mandel variational criterion for homogenization scheme is a necessary, but not a sufficient condition for the micro–macro thermodynamic consistency when dissipative material responses are involved at any scale. In this sense, the additional condition to be fulfilled considering that the multiscale thermodynamic consistency is established. The general case of temperature-dependent, higher order elastoplasticity is considered as theoretical framework to account for the material dissipation at micro and macro scales of observation. It is shown that the thermodynamic consistency enforces the homogenization of the nonlocal terms of the finer scale's free energy density; however, this does not lead to nonlocal gradient effects on the coarse scale. Then, the particular cases of local isothermal elastoplasticity and continuum damage are considered for the purpose of the proposed thermodynamically consistent approach for multiscale homogenizations.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Guidault, P. A. , Allix, O. , Champaney, L. , and Navarro, J. P. , 2007, “ A Two-Scale Approach With Homogenization for the Computation of Cracked Structures,” Comput. Struct., 85(17–18), pp. 1360–1371. [CrossRef]
Hettich, T. , Hund, A. , and Ramm, E. , 2008, “ Modeling of Failure in Composites by X-FEM and Level Sets Within a Multiscale Framework,” Comput. Methods Appl. Mech. Eng., 197(5), pp. 414–424. [CrossRef]
Eckardt, S. , and Könke, C. , 2008, “ Adaptive Damage Simulation of Concrete Using Heterogeneous Multiscale Models,” J. Algorithm Comput. Technol., 2(2), pp. 275–297. [CrossRef]
Lloberas-Valls, O. , Rixen, D. J. , Simone, A. , and Sluys, L. J. , 2012, “ Multiscale Domain Decomposition Analysis of Quasi-Brittle Heterogeneous Materials,” Int. J. Numer. Methods. Eng., 89(11), pp. 1337–1366. [CrossRef]
Belytschko, T. , and Song, J.-H. , 2010, “ Coarse-Graining of Multiscale Crack Propagation,” Int. J. Numer. Methods Eng., 81(5), pp. 537–563.
de Souza Neto, E. A. , and Feijóo, R. A. , 2006, “ Variational Foundations of Multi-Scale Constitutive Models of Solid: Small and Large Strain Kinematical Formulation,” National Laboratory for Scientific Computing, Rio de Janeiro, Brazil, Report No. 16.
Abraham, F. F. , Broughton, J. Q. , Bernstein, N. , and Kaxiras, E. , 1998, “ Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture,” Europhys. Lett., 44(6), pp. 783–787. [CrossRef]
Khare, R. , Mielke, S. L. , Paci, J. T. , Zhang, S. , Ballarini, R. , Schatz, G. C. , and Belytschko, T. , 2007, “ Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets,” Phys. Rev. B, 75(7), pp. 96–113. [CrossRef]
Xiao, S. P. , and Belytschko, T. , 2004, “ A Bridging Domain Method for Coupling Continua With Molecular Dynamics,” Comput. Methods Appl. Mech. Eng., 193(17–20), pp. 1645–1669. [CrossRef]
Kouznetsova, V . G. , Geers, M. G. D. , and Brekelmans, W. A. M. , 2004, “ Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy,” Comput. Methods Appl. Mech. Eng., 193(48–51), pp. 5525–5550. [CrossRef]
Peric, D. , de Souza Neto, E. A. , Feijóo, R. A. , Partovi, M. , and Carneiro Molina, A. J. , 2011, “ On Micro-to-Macro Transitions for Multi-Scale Analysis of Non-Linear Heterogeneous Materials: Unified Variational Basis and Finite Element Implementation,” Int. J. Numer. Methods Eng., 87(1–5), pp. 149–170. [CrossRef]
Gitman, I. M. , Askes, H. , and Sluys, L. J. , 2007, “ Representative Volume: Existence and Size Determination,” Eng. Fract. Mech., 74(16), pp. 2518–2534. [CrossRef]
Nguyen, V. P. , Stroeven, M., and Sluys, L. J., 2012, “ Multiscale Failure Modeling of Concrete: Micromechanical Modeling, Discontinuous Homogenization and Parallel Computations,” Comput. Methods Appl. Mech. Eng., 201–204, pp. 139–156. [CrossRef]
Coenen, E. W. C. , Kouznetsova, V . G. , Bosco, E. , and Geers, M. G. D. , 2012, “ A Multi-Scale Approach to Bridge Microscale Damage and Macroscale Failure: A Nested Computational Homogenization-Localization Framework,” Int. J. Fract., 178(1), pp. 157–178. [CrossRef]
Karamnejad, A. , Nguyen, V . P. , and Sluys, L. J. , 2013, “ A Multi-Scale Rate Dependent Crack Model for Quasi-Brittle Heterogeneous Materials,” Eng. Fract. Mech., 104, pp. 96–113. [CrossRef]
Poh, L. H. , Peerlings, R. H. J. , Geers, M. G. D. , and Swaddiwudhipong, S. , 2013, “ Homogenization Towards a Grain-Size Dependent Plasticity Theory for Single Slip,” J. Mech. Phys. Solids, 61(4), pp. 913–927. [CrossRef]
Toro, S. , Sanchez, P. J. , Huespe, A. E. , Guisti, S. M. , Blanco, P. J. , and Feijóo, R. A. , 2014, “ A Two-Scale Failure Model for Heterogeneous Materials: Numerical Implementation Based on the Finite Element Method,” Int. J. Numer. Methods Eng., 97(5), pp. 313–351. [CrossRef]
Verhoosel, C. V. , Remmers, J. J. C. , Gutierrez, M. A. , and de Borst, R. , 2010, “ Computational Homogenization for Adhesive and Cohesive Failure in Quasi-Brittle Solids,” Int. J. Numer. Methods Eng., 83(8–9), pp. 1155–1179. [CrossRef]
Oliver, J. , Caicedo, M. , Roubin, E. , Huespe, A. E. , and Hernández, J. A. , 2015, “ Continuum Approach to Computational Multiscale Modeling of Propagating Fracture,” Comput. Methods Appl. Mech. Eng., 294, pp. 384–427. [CrossRef]
Nguyen, V. P. , Stroeven, M. , and Sluys, L. J. , 2012, “ An Enhanced Continuous Discontinuous Multiscale Method for Modeling Mode-I Cohesive Failure in—Random Heterogeneous Quasi-Brittle Materials,” Eng. Fract. Mech., 79, pp. 78–102. [CrossRef]
Poh, L. H. , Peerlings, R. H. J. , Geers, M. G. D. , and Swaddiwudhipong, S. , 2013, “ Towards a Homogenized Plasticity Theory Which Predicts Structural and Microstructural Size Effects,” J. Mech. Phys. Solids, 61(11), pp. 2240–2259. [CrossRef]
Blanco, P. J. , and Giusti, S. M. , 2014, “ Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects,” J. Elasticity, 115(1), pp. 27–46. [CrossRef]
Miehe, C. , Schröder, J. , and Schotte, J. , 1999, “ Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials,” Comput. Methods Appl. Mech. Eng., 171(3–4), pp. 387–418. [CrossRef]
Maugin, G. A. , 1992, The Thermomechanics of Plasticity and Fracture, Press Syndicate of the University of Cambridge, Cambridge, UK.
Suquet, P. M. , 1987, “ Elements of Homogenization for Inelastic Solid Mechanics,” Homogenization Techniques for Composite Materials (Lecture Notes in Physics), E. Sanchez-Palenzia and A. Zaoui , eds., Springer-Verlag, Berlin, pp. 193–278.
Svedberg, T. , and Runesson, K. , 1997, “ A Thermodynamically Consistent Theory of Gradient-Regularized Plasticity Coupled to Damage,” Int. J. Plast., 13(6–7), pp. 669–696. [CrossRef]
Vrech, S. M. , and Etse, G. , 2009, “ Gradient and Fracture Energy-Based Plasticity Theory for Quasi-Brittle Materials Like Concrete,” Comput. Methods Appl. Mech. Eng., 199(1–4), pp. 136–147. [CrossRef]
Ripani, M. , Etse, G. , Vrech, S. , and Mroginski, J. , 2014, “ Thermodynamic Gradient-Based Poroplastic Theory for Concrete Under High Temperatures,” Int. J. Plast., 61, pp. 157–177. [CrossRef]
Miehe, C. , Schröder, J. , and Becker, M. , 2002, “ Computational Homogenization Analysis in Finite Elasticity: Material and Structural Instabilities on the Micro- and Macro-Scales of Periodic Composites and Their Interaction,” Comput. Methods Appl. Mech. Eng., 191(44), pp. 4971–5005. [CrossRef]
Gross, D. , and Seeling, T. , 2011, Fracture Mechanics, Springer, New York. [PubMed] [PubMed]
Blanco, P. J. , Sánchez, P. J. , Souza Neto, E. A. , and Feijóo, R. A. , 2014, “ Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models,” Arch. Comput. Methods Eng., 23(2), pp. 191–253.
Sánchez, P. J. , Blanco, P. J. , Huespe, A. E. , and Feijóo, R. A. , 2013, “ Failure-Oriented Multi-Scale Variational Formulation: Micro-Structures With Nucleation and Evolution of Softening Bands,” Comput. Methods Appl. Mech. Eng., 257, pp. 221–247. [CrossRef]
Bosco, E. , Kouznetsova, V . G. , Coenen, E. W. C. , Geers, M. G. D. , and Salvadori, A. , 2014, “ A Multiscale Framework for Localizing Microstructures Towards the Onset of Macroscopic Discontinuity,” Comput. Mech., 54(2), pp. 299–319. [CrossRef]
Kulkarni, M. G. , Matouš, K. , and Geubelle, P. H. , 2010, “ Coupled Multi-Scale Cohesive Modeling of Failure in Heterogeneous Adhesives,” Int. J. Numer. Methods Eng., 84(8), pp. 916–946. [CrossRef]
Caggiano, A. , Etse, G. , and Martinelli, E. , 2012, “ Zero-Thickness Interface Model Formulation for Failure Behavior of Fiber-Reinforced Cementitious Composites,” Comput. Struct., 98–99, pp. 23–32. [CrossRef]


Grahic Jump Location
Fig. 1

Tension–displacement function for crack opening

Grahic Jump Location
Fig. 2

One-dimensional representation of continuum damage-based material behavior



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In