Research Papers

Proper Orthogonal Decomposition–Radial Basis Function Surrogate Model-Based Inverse Analysis for Identifying Nonlinear Burgers Model Parameters From Nanoindentation Data

[+] Author and Article Information
Salah U. Hamim

Advanced Development Engineering,
Fiat Chrysler Automobiles,
Auburn Hills, MI 48326

Raman P. Singh

School of Mechanical and
Aerospace Engineering,
Oklahoma State University,
Stillwater, OK 74078
e-mail: raman.singh@okstate.edu

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received August 12, 2016; final manuscript received May 10, 2017; published online July 6, 2017. Assoc. Editor: Curt Bronkhorst.

J. Eng. Mater. Technol 139(4), 041010 (Jul 06, 2017) (8 pages) Paper No: MATS-16-1228; doi: 10.1115/1.4037022 History: Received August 12, 2016; Revised May 10, 2017

This study explores the application of a proper orthogonal decomposition (POD) and radial basis function (RBF)-based surrogate model to identify the parameters of a nonlinear viscoelastic material model using nanoindentation data. The inverse problem is solved by reducing the difference between finite element simulation-trained surrogate model approximation and experimental data through genetic algorithm (GA)-based optimization. The surrogate model, created using POD–RBF, is trained using finite element (FE) data obtained by varying model parameters within a parametric space. Sensitivity of the model parameters toward the load–displacement output is utilized to reduce the number of training points required for surrogate model training. The effect of friction on simulated load–displacement data is also analyzed. For the obtained model parameter set, the simulated output matches well with experimental data for various experimental conditions.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


McKee, C. , Last, J. , Russell, P. , and Murphy, C. , 2011, “ Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues,” Tissue Eng., Part B, 17(3), pp. 155–164. [CrossRef]
Hamim, S. U. , and Singh, R. P. , 2014, “ Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites,” Int. Scholarly Res. Not., 2014, pp. 1–13. [CrossRef]
Peng, G. , Ma, Y. , Feng, Y. , Huan, Y. , Qin, C. , and Zhang, T. , 2015, “ Nanoindentation Creep of Nonlinear Viscoelastic Polypropylene,” Polym. Test., 43, pp. 38–43. [CrossRef]
Doerner, M. , and Nix, W. , 1986, “ A Method for Interpreting the Data From Depth-Sensing Indentation Instruments,” J. Mater. Res., 1(4), pp. 601–609. [CrossRef]
Oliver, W. , and Pharr, G. , 1992, “ An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1583. [CrossRef]
Hamim, S. U. , Mishra, K. , and Singh, R. P. , 2014, “ Effect of UV Exposure on Mechanical Properties of POSS Reinforced Epoxy Nanocomposites,” Annual Conference on Experimental and Applied Mechanics, Greenville, SC, June 2–5, pp. 147–152.
Martynova, E. , 2015, “ Determination of the Properties of Viscoelastic Materials Using Spherical Nanoindentation,” Mech. Time-Depend. Mater., 20(1), pp. 85–93. [CrossRef]
Herbert, E. G. , Phani, P. S. , and Johanns, K. E. , 2015, “ Nanoindentation of Viscoelastic Solids: A Critical Assessment of Experimental Methods,” Curr. Opin. Solid State Mater. Sci., 19(6), pp. 334–339. [CrossRef]
Nakamura, T. , Wang, T. , and Sampath, S. , 2000, “ Determination of Properties of Graded Materials by Inverse Analysis and Instrumented Indentation,” Acta Mater., 48(17), pp. 4293–4306. [CrossRef]
Gu, Y. , Nakamura, T. , Prchlik, L. , Sampath, S. , and Wallace, J. , 2003, “ Micro-Indentation and Inverse Analysis to Characterize Elastic—Plastic Graded Materials,” Mater. Sci. Eng., A, 345(1–2), pp. 223–233. [CrossRef]
Nakamura, T. , and Gu, Y. , 2007, “ Identification of Elastic–Plastic Anisotropic Parameters Using Instrumented Indentation and Inverse Analysis,” Mech. Mater., 39(4), pp. 340–356. [CrossRef]
Nakamura, T. , and Liu, Y. , 2007, “ Determination of Nonlinear Properties of Thermal Sprayed Ceramic Coatings Via Inverse Analysis,” Int. J. Solids Struct., 44(6), pp. 1990–2009. [CrossRef]
Moy, C. , Bocciarelli, M. , Ringer, S. , and Ranzi, G. , 2011, “ Identification of the Material Properties of Al 2024 Alloy by Means of Inverse Analysis and Indentation Tests,” Mater. Sci. Eng., A, 529, pp. 119–130. [CrossRef]
Abyaneh, M. , Wildman, R. , Ashcroft, I. , and Ruiz, P. , 2013, “ A Hybrid Approach to Determining Cornea Mechanical Properties In Vivo Using a Combination of Nano-Indentation and Inverse Finite Element Analysis,” J. Mech. Behav. Biomed. Mater., 27, pp. 239–248. [CrossRef] [PubMed]
Zhang, M. , Cao, Y. , Li, G. , and Feng, X. , 2014, “ Spherical Indentation Method for Determining the Constitutive Parameters of Hyperelastic Soft Materials,” Biomech. Model. Mechanobiol., 13(1), pp. 1–11. [CrossRef] [PubMed]
Gutierrez, L. , Li, H. , Toda, H. , Kobayashi, M. , Kuwazuru, O. , and Batres, R. , 2014, “ A Method for the Identification of Mechanical Properties Using Surrogate Models,” Int. J. Comput. Theory Eng., 6(3), pp. 234–239. [CrossRef]
Wang, H. , Li, W. , and Li, G. , 2012, “ A Robust Inverse Method Based on Least Square Support Vector Regression for Johnson-Cook Material Parameters,” Comput. Mater. Continua, 28(2), pp. 121–146. http://www.techscience.com/doi/10.3970/cmc.2012.028.121.pdf
Wang, H. , Zeng, Y. , Yu, X. , Li, G. , and Li, E. , 2016, “ Surrogate-Assisted Bayesian Inference Inverse Material Identification Method and Application to Advanced High Strength Steel,” Inverse Probl. Sci. Eng., 24(7), pp. 1133–1161. [CrossRef]
Li, F. , Wang, J.-A. , and Brigham, J. C. , 2014, “ Inverse Calculation of In Situ Stress in Rock Mass Using the Surrogate-Model Accelerated Random Search Algorithm,” Comput. Geotech., 61, pp. 24–32. [CrossRef]
Nguyen, N. , Wineman, A. , and Waas, A. , 2015, “ Compression of Fluid-Filled Polymeric Capsules and Inverse Analysis to Determine Nonlinear Viscoelastic Properties,” Int. J. Solids Struct., 62, pp. 8–17. [CrossRef]
Bolzon, G. , Maier, G. , and Panico, M. , 2004, “ Material Model Calibration by Indentation, Imprint Mapping and Inverse Analysis,” Int. J. Solids Struct., 41(11–12), pp. 2957–2975. [CrossRef]
Steuben, J. , Michopoulos, J. , Iliopoulos, A. , and Turner, C. , 2013, “ Inverse Characterization of Composite Materials Using Surrogate Models,” ASME Paper No. DETC2013-12656.
Hussain, M. F. , Barton, R. R. , and Joshi, S. B. , 2002, “ Metamodeling: Radial Basis Functions, Versus Polynomials,” Eur. J. Oper. Res., 138(1), pp. 142–154. [CrossRef]
Barton, R. R. , 1998, “ Simulation Metamodels,” 30th Conference on Winter Simulation (WSC), Washington, DC, Dec. 13–16, pp. 167–176.
Jin, R. , Chen, W. , and Simpson, T. , 2001, “ Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria,” Struct. Multidiscip. Optim., 23(1), pp. 1–13. [CrossRef]
Bocciarelli, M. , and Bolzon, G. , 2009, “ Indentation and Imprint Mapping for the Identification of Interface Properties in Film-Substrate Systems,” Int. J. Fract., 155(1), pp. 1–17. [CrossRef]
Bolzon, G. , and Talassi, M. , 2013, “ An Effective Inverse Analysis Tool for Parameter Identification of Anisotropic Material Models,” Int. J. Mech. Sci., 77, pp. 130–144. [CrossRef]
Bolzon, G. , 2014, “ Advances in Experimental Mechanics by the Synergetic Combination of Full-Field Measurement Techniques and Computational Tools,” Measurement, 54, pp. 159–165. [CrossRef]
Kucuk, Y. , 2012, “ Simulation of Non-Linear Viscoelastic Behavior of Cross-Linked Mesoporous Silica Aerogels by Depth-Sensing Indentation,” Indian J. Eng. Mater. Sci., 19(4), pp. 260–268. http://nopr.niscair.res.in/handle/123456789/14654
Kucuk, Y. , Mollamahmutoglu, C. , Wang, Y. , and Lu, H. , 2013, “ Nonlinearly Viscoelastic Nanoindentation of PMMA Under a Spherical Tip,” Exp. Mech., 53(5), pp. 731–742. [CrossRef]
Marin, J. , and Pao, Y. , 1953, “ An Analytical Theory of the Creep Deformation of Materials,” ASME J. Appl. Mech., 20, pp. 245–252.
Richter, H. , Misawa, E. , Lucca, D. , and Lu, H. , 2001, “ Modeling Nonlinear Behavior in a Piezoelectric Actuator,” Precis. Eng., 25(2), pp. 128–137. [CrossRef]
Shames, I. , and Cozzarelli, F. , 1997, Elastic and Inelastic Stress Analysis, Taylor and Francis, Washington, DC.
Wang, T. H. , Fang, T.-H. , and Lin, Y.-C. , 2007, “ A Numerical Study of Factors Affecting the Characterization of Nanoindentation on Silicon,” Mater. Sci. Eng., A, 447(1–2), pp. 244–253.
Warren, A. , and Guo, Y. , 2006, “ Machined Surface Properties Determined by Nanoindentation: Experimental and FEA Studies on the Effects of Surface Integrity and Tip Geometry,” Surf. Coat. Technol., 201(1–2), pp. 423–433. [CrossRef]
Goh, S. M. , Charalambides, M. N. , and Williams, J. G. , 2004, “ Characterisation of Non-Linear Viscoelastic Foods by the Indentation Technique,” Rheol. Acta, 44(1), pp. 47–54. [CrossRef]
Harsono, E. , Swaddiwudhipong, S. , and Liu, Z. S. , 2008, “ The Effect of Friction on Indentation Test Results,” Modell. Simul. Mater. Sci. Eng., 16(6), p. 065001. [CrossRef]
Hamim, S. U. , and Singh, R. P. , 2017, “ Taguchi-Based Design of Experiments in Training POD-RBF Surrogate Model for Inverse Material Modeling Using Nanoindentation,” Inverse Probl. Sci. Eng., 25(3), pp. 363–381. [CrossRef]
Magnenet, V. , Giraud, A. , and Homand, F. , 2008, “ Parameter Sensitivity Analysis for a Drücker–Prager Model Following From Numerical Simulations of Indentation Tests,” Comput. Mater. Sci., 44(2), pp. 385–391. [CrossRef]
Ma, Y. , Zhang, Y. , Yu, H.-F. , Zhang, X.-Y. , Shu, X.-F. , and Tang, B. , 2013, “ Plastic Characterization of Metals by Combining Nanoindentation Test and Finite Element Simulation,” Trans. Nonferrous Met. Soc. China, 23(8), pp. 2368–2373. [CrossRef]
Clément, P. , Meille, S. , Chevalier, J. , and Olagnon, C. , 2013, “ Mechanical Characterization of Highly Porous Inorganic Solids Materials by Instrumented Micro-Indentation,” Acta Mater., 61(18), pp. 6649–6660. [CrossRef]
Chatterjee, A. , 2000, “ An Introduction to the Proper Orthogonal Decomposition,” Curr. Sci., 78(7), pp. 808–817. http://www.iisc.ernet.in/currsci/apr102000/tutorial2.pdf
Liang, Y. , Lee, H. , Lim, S. , Lin, W. , Lee, K. , and We, C. , 2002, “ Proper Orthogonal Decomposition and Its Applications—Part I: Theory,” J. Sound Vib., 252(3), pp. 527–544. [CrossRef]
Ly, H. , and Tran, H. , 2001, “ Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition,” Math. Comput. Model., 33(1–3), pp. 223–236. [CrossRef]
Buljak, V. , 2012, “ Proper Orthogonal Decomposition and Radial Basis Functions for Fast Simulations,” Inverse Analyses With Model Reduction, Springer-Verlag, Berlin, pp. 85–139.
Rogers, C. , Kassab, A. , Divo, E. , Ostrowski, Z. , and Bialecki, R. , 2012, “ An Inverse POD-RBF Network Approach to Parameter Estimation in Mechanics,” Inverse Probl. Sci. Eng., 20(5), pp. 749–767. [CrossRef]
DiCarlo, A. , Yang, H. T. Y. , and Chandrasekar, S. , 2003, “ Semi-Inverse Method for Predicting Stress–Strain Relationship From Cone Indentations,” J. Mater. Res., 18(9), pp. 2068–2078. [CrossRef]


Grahic Jump Location
Fig. 1

abaqus finite element model

Grahic Jump Location
Fig. 2

Nonlinear Burgers model

Grahic Jump Location
Fig. 3

Effect of the friction coefficient f on nanoindentation data for different loading–unloading times and constant maximum loads (difference = depth for frictionless—depth for f = 0.125/0.25/0.5)

Grahic Jump Location
Fig. 4

Effect of the friction coefficient f on nanoindentation data for different maximum loads and constant loading–unloading times (difference = depth for frictionless—depth for f = 0.125/0.25/0.5)

Grahic Jump Location
Fig. 5

Output sensitivity toward different nonlinear Burgers model parameters

Grahic Jump Location
Fig. 6

Experiment versus surrogate model for calibrated nonlinear Burgers model parameters: load time, t = 30 s (a), 45 s (b), 60 s (c), and 240 s (d)

Grahic Jump Location
Fig. 7

Experiment versus finite element simulation for calibrated nonlinear Burgers model parameters: load time, t = 30 s (a), 45 s (b), 30 s (c), and 45 s (d)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In