0
Research Papers

Atomistically Informed and Dislocation-Based Viscoplasticity Model for Multilayer Composite Thin Films

[+] Author and Article Information
Mohsen Damadam

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99163;
Neil Armstrong Hall of Engineering,
Purdue University,
West Lafayette, IN 47906
e-mails: mohsen.damadam@wsu.edu;
mdamadam@purdue.edu

Mohammed Anazi, Hussein Zbib

School of Mechanical and Materials Engineering,
Washington State University,
Pullman, WA 99163

Georges Ayoub

Department of Industrial and Manufacturing
Systems Engineering,
University of Michigan,
Ann Arbor, MI 48128

1Corresponding author.

Contributed by the Materials Division of ASME for publication in the JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY. Manuscript received June 12, 2018; final manuscript received November 7, 2018; published online January 31, 2019. Assoc. Editor: Peter W. Chung.

J. Eng. Mater. Technol 141(2), 021010 (Jan 31, 2019) (9 pages) Paper No: MATS-18-1176; doi: 10.1115/1.4042034 History: Received June 12, 2018; Revised November 07, 2018

Nano-scale multilayer composite thin films are potential candidates for coating applications at harsh environments due to their promising mechanical and thermal properties. In this study, a viscoplasticity continuum model based on the plastic flow potential of metal/ceramic nanolayer composites, obtained from molecular dynamics (MD) simulations, is developed to build up a multiscale model bridges atomistic simulation with continuum models for the thin film composites. The model adopts a power law hardening considering confined layer slip (CLS) mechanism and accounts for the evolution of dislocation density based on the statistically stored dislocations and geometrically necessary dislocations. It is then implemented into a finite element code (ls-dyna) to investigate the deformation behavior of nanolayer composites at the macroscale. The deformation behavior of a high strength steel coated with Nb/NbC multilayer is also examined.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Damadam, M. , Shao, S. , Ayoub, G. , and Zbib, H. M. , 2017, “ Recent Advances in Modeling of Interfaces and Mechanical Behavior of Multilayer Metallic/Ceramic Composites,” J. Mater. Sci., 53(8), pp. 5604–5617. [CrossRef]
Li, N. , and Liu, X.-Y. , 2017, “ Review: Mechanical Behavior of Metal/Ceramic Interfaces in Nanolayered Composites—Experiments and Modeling,” J. Mater. Sci., 53(8), pp. 5562–5583. [CrossRef]
Salehinia, I. , Shao, S. , Wang, J. , and Zbib, H. M. , 2014, “ Plastic Deformation of Metal/Ceramic Nanolayered Composites,” JOM, 66(10), pp. 2078–2085. [CrossRef]
Yang, L. W. , Mayer, C. , Li, N. , Baldwin, J. , Mara, N. , Chawla, N. , Aldareguia, J. , and LIorca, J. , 2018, “ Mechanical Properties of Metal-Ceramic Nanolaminates: Effect of Constraint and Temperature,” Acta Mater., 142, pp. 37–48. [CrossRef]
Padture, N. P. , Gell, M. , and Jordan, E. H. , 2002, “ Thermal Barrier Coatings for Gas-Turbine Engine Applications,” Science, 296(5566), pp. 280–284. [CrossRef] [PubMed]
Dück, A. , Gamer, N. , Gesatzke, W. , Griepentrog, M. , Osterle, W. , Sahre, M. , and Urban, I. , 2001, “ Ti/TiN Multilayer Coatings: Deposition Technique, Characterization and Mechanical Properties,” Surf. Coat. Technol., 142–144, pp. 579–584. [CrossRef]
Ma, K. J. , Bloyce, A. , and Bell, T. , 1995, “ Examination of Mechanical Properties and Failure Mechanisms of TiN and Ti−TiN Multilayer Coatings,” Surf. Coat. Technol., 76–77(Pt. 1), pp. 297–302. [CrossRef]
Zhang, K. , Hao, L. , Du, M. , Mi, J. , Wang, J. , and Meng, J. , 2017, “ A Review on Thermal Stability and High Temperature Induced Ageing Mechanisms of Solar Absorber Coatings,” Renewable Sustainable Energy Rev., 67, pp. 1282–1299. [CrossRef]
Salehinia, I. , Shao, S. , Wang, J. , and Zbib, H. M. , 2015, “ Interface Structure and the Inception of Plasticity in Nb/NbC Nanolayered Composites,” Acta Mater., 86, pp. 331–340. [CrossRef]
Yang, W. , Ayoub, G. , Salehinia, I. , Mansoor, B. , and Zbib, H. , 2017, “ Deformation Mechanisms in Ti/TiN Multilayer Under Compressive Loading,” Acta Mater., 122, pp. 99–108. [CrossRef]
Bhattacharyya, D. , Mara, N. A. , Dickerson, P. , Hoagland, R. , and Misra, A. , 2011, “ Compressive Flow Behavior of Al–TiN Multilayers at Nanometer Scale Layer Thickness,” Acta Mater., 59(10), pp. 3804–3816. [CrossRef]
Bhattacharyya, D. , Mara, N. A. , Dickerson, P. , Hoagland, R. , and Misra, A. , 2010, “ A Transmission Electron Microscopy Study of the Deformation Behavior Underneath Nanoindents in Nanoscale Al–TiN Multilayered Composites,” Philos. Mag., 90(13), pp. 1711–1724. [CrossRef]
Bhattacharyya, D. , Mara, N. A. , Hoagland, R. G. , and Misra, A. , 2008, “ Nanoindentation and Microstructural Studies of Al/TiN Multilayers With Unequal Volume Fractions,” Scr. Mater., 58(11), pp. 981–984. [CrossRef]
Abadias, G. , Dub, S. , and Shmegera, R. , 2006, “ Nanoindentation Hardness and Structure of Ion Beam Sputtered TiN, W and TiN/W Multilayer Hard Coatings,” Surf. Coat. Technol., 200(22–23), pp. 6538–6543. [CrossRef]
Daia, M. , Aubert, P. , Labdi, S. , Sant, C. , Sadi, F. , and Houdy, P. H. , 2000, “ Nanoindentation Investigation of Ti/TiN Multilayers Films,” J. Appl. Phys., 87, pp. 7753–7757. [CrossRef]
Zhang, G. A. , Wu, Z. G. , Wang, M. X. , Fan, X. , Wang, J. , and Yan, P. , 2007, “ Structure Evolution and Mechanical Properties Enhancement of Al/AlN Multilayer,” Appl. Surf. Sci., 253(22), pp. 8835–8840. [CrossRef]
Mook, W. M. , Raghavan, R. , Baldwin, J. K. , Frey, D. , Michler, J. , and Mara, N. , 2013, “ Indentation Fracture Response of Al–TiN Nanolaminates,” Mater. Res. Lett., 1(2), pp. 102–108. [CrossRef]
Lotfian, S. , Rodríguez, M. , Yazzie, K. E. , Chawla, N. , LIorca, J. , and Aldareguia, M. , 2013, “ High Temperature Micropillar Compression of Al/SiC Nanolaminates,” Acta Mater., 61(12), pp. 4439–4451. [CrossRef]
Damadam, M. , Shao, S. , Salehinia, I. , Ayoub, G. , and Zbib, H. , 2017, “ Molecular Dynamics Simulations of Mechanical Behavior in Nanoscale Ceramic–Metallic Multilayer Composites,” Mater. Res. Lett., 5(5), pp. 1–8. [CrossRef]
Li, N. , Wang, H. , Misra, A. , and Wang, J. , 2014, “ In Situ Nanoindentation Study of Plastic Co-Deformation in Al–TiN Nanocomposites,” Sci. Rep., 4(4), p. 6633. [CrossRef] [PubMed]
Huang, S. , Wang, J. , and Zhou, C. , 2015, “ Effect of Plastic Incompatibility on the Strain Hardening Behavior of Al–TiN Nanolayered Composites,” Mater. Sci. Eng. A, 636, pp. 430–433. [CrossRef]
Wirth, B. D. , Caturla, M. J. , Diaz de la Rubia, T. , Khraishi, T. , and Zbib, H. , 2001, “ Mechanical Property Degradation in Irradiated Materials: A Multiscale Modeling Approach,” Nucl. Instrum. Methods Phys. Res. Sect. B, 180(1–4), pp. 23–31. [CrossRef]
Groh, S. , Marin, E. B. , Horstemeyer, M. F. , and Zbib, H. M. , 2009, “ Multiscale Modeling of the Plasticity in an Aluminum Single Crystal,” Int. J. Plast., 25(8), pp. 1456–1473. [CrossRef]
Shao, S. , Misra, A. , Huang, H. , and Wang, J. , 2018, “ Micro-Scale Modeling of Interface-Dominated Mechanical Behavior,” J. Mater. Sci., 53(8), pp. 5546–5561. [CrossRef]
Yasin, H. , Zbib, H. M. , and Khaleel, M. A. , 2001, “ Size and Boundary Effects in Discrete Dislocation Dynamics: Coupling With Continuum Finite Element,” Mater. Sci. Eng. A, 309–310, pp. 294–299. [CrossRef]
Xiong, L. , Xu, S. , McDowell, D. L. , and Chen, Y. , 2015, “ Concurrent Atomistic–Continuum Simulations of Dislocation–Void Interactions in Fcc Crystals,” Int. J. Plast., 65, pp. 33–42. [CrossRef]
Roters, F. , Eisenlohr, P. , Hantcherli, L. , Tjahjanto, D. , Bieler, T. , and Raabe, D. , 2010, “ Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications,” Acta Mater., 58(4), pp. 1152–1211. [CrossRef]
Gu, T. , Castelnau, O. , Forest, S. , Luanco, E. , Lecouturier, F. , Proudhon, H. , and Thilly, L. , 2017, “ Multiscale Modeling of the Elastic Behavior of Architectured and Nanostructured Cu–Nb Composite Wires,” Int. J. Solids Struct., 121, pp. 148–162. [CrossRef]
Gröger, R. , Racherla, V. , Bassani, J. L. , and Vitek, V. , 2008, “ Multiscale Modeling of Plastic Deformation of Molybdenum and Tungsten—II: Yield Criterion for Single Crystals Based on Atomistic Studies of Glide of 1/2〈111〉 Screw Dislocations,” Acta Mater., 56(19), pp. 5412–5425. [CrossRef]
Segurado, J. , Lebensohn, R. A. , LLorca, J. , and Tomé, C. N. , 2012, “ Multiscale Modeling of Plasticity Based on Embedding the Viscoplastic Self-Consistent Formulation in Implicit Finite Elements,” Int. J. Plast., 28(1), pp. 124–140. [CrossRef]
Chandra, S. , Samal, M. K. , Chavan, V. M. , and Raghunathan, S. , 2018, “ Hierarchical Multiscale Modeling of Plasticity in Copper: From Single Crystals to Polycrystalline Aggregates,” Int. J. Plast., 101, pp. 188–212. [CrossRef]
Zbib, H. M. , and Diaz de la Rubia, T. , 2002, “ A Multiscale Model of Plasticity,” Int. J. Plast., 18(9), pp. 1133–1163. [CrossRef]
Damadam, M. , Shao, S. , Salehinia, I. , Ayoub, G. , and Zbib, H. , 2017, “ Strength and Plastic Deformation Behavior of Nanolaminate Composites With Pre-Existing Dislocations,” Comput. Mater. Sci., 138, pp. 42–48. [CrossRef]
Montheillet, F. , Jonas, J. J. , and Benferrah, M. , 1991, “ Development of Anisotropy During the Cold Rolling of Aluminium Sheet,” Int. J. Mech. Sci., 33(3), pp. 197–209. [CrossRef]
Misra, A. , Hirth, J. P. , and Hoagland, R. G. , 2005, “ Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites,” Acta Mater., 53(18), pp. 4817–4824. [CrossRef]
Li, N. , Wang, J. , Misra, A. , and Huang, J. Y. , 2012, “ Direct Observations of Confined Layer Slip in Cu/Nb Multilayers,” Microsc. Microanal., 18, pp. 1155–1162. [CrossRef] [PubMed]
Zhu, T. , Li, J. , Samanta, A. , Leach, A. , and Gall, K. , 2008, “ Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation,” Phys. Rev. Lett., 100, p. 025502. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.025502
Abdolrahim, N. , Zbib, H. M. , and Bahr, D. F. , 2014, “ Multiscale Modeling and Simulation of Deformation in Nanoscale Metallic Multilayer Systems,” Int. J. Plast., 52, pp. 33–50. [CrossRef]
Kocks, U. F. , 1976, “ Laws for Work-Hardening and Low-Temperature Creep,” ASME J. Eng. Mater. Technol., 98(1), pp. 76–85. [CrossRef]
Ohashi, T. , Kawamukai, M. , and Zbib, H. , 2007, “ A Multiscale Approach for Modeling Scale-Dependent Yield Stress in Polycrystalline Metals,” Int. J. Plast., 23(5), pp. 897–914. [CrossRef]
Gao, H. , and Huang, Y. , 2003, “ Geometrically Necessary Dislocation and Size-Dependent Plasticity,” Scr. Mater., 42(2), pp. 113–118. [CrossRef]
Mastorakos, I. N. , Schoeppner, R. L. , Kowalczyk, B. , and Bahr, D. F. , 2017, “ The Effect of Size and Composition on the Strength and Hardening of Cu–Ni/Nb Nanoscale Metallic Composites,” J. Mater. Res., 32(13), pp. 2542–2550. [CrossRef]
El-Awady, J. A. , 2015, “ Unravelling the Physics of Size-Dependent Dislocation-Mediated Plasticity,” Nat. Commun., 6(6), p. 5926. https://www.nature.com/articles/ncomms6926
Ramesh Babu, S. , Senthil Kumar, V. S. , Karunamoorthy, L. , and Madhusudhan Reddy, G. , 2014, “ Investigation on the Effect of Friction Stir Processing on the Superplastic Forming of AZ31B Alloy,” Mater. Des., 53, pp. 338–348. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic bottom–up multiscale modeling framework from nanoscale to macroscale

Grahic Jump Location
Fig. 2

Yield locus of 3 nm NbC/7 nm Nb at 300 K [33]

Grahic Jump Location
Fig. 3

(a) Glide of threading dislocations confined inside Nb and NbC layers (CLS mechanism) and (b) interface structure of Nb/NbC nanocomposite with dislocation nucleation from misfit dislocations

Grahic Jump Location
Fig. 4

A thin film of Nb/NbC multilayer discretized in ls-dyna with gauge length of 30mm×6mm×0.3mm along the x, y, and z directions. A number of elements along the x, y, and z directions are 84, 12, and 6, respectively.

Grahic Jump Location
Fig. 5

Stress–strain curve of Nb/NbC multilayer under uniaxial tension for three different layer thicknesses using m=0.35 at strain rate of 0.0001 s−1 and IDD=1010mm/mm3(a), contour plot of effective plastic strain for the individual layer thickness of 40 nm Nb/40 nm NbC at ε=0.01 (b), and ε=0.03 (c)

Grahic Jump Location
Fig. 6

(a) Effect of IDD on the deformation behavior for individual layer thickness of 40 nm Nb/40 nm NbC using m=0.35 and strain rate of 0.0001 s−1 and (b) evolution of total dislocation density for the stress–strain curves of (a)

Grahic Jump Location
Fig. 7

(a) Deformation behavior at a different strain rate sensitivity for individual layer thickness of 40 nm Nb/40 nm NbC using IDD=1010mm/mm3 and strain rate of 0.0001 s−1 and (b) yield stress versus strain rate sensitivity at two different initial dislocation densities

Grahic Jump Location
Fig. 8

Dislocation density evolution: Statistically stored dislocation density (a), geometrically stored dislocation density (b), effective shear stress versus effective shear strain (c), and resolved shear stress versus effective shear strain (d) for individual layer thickness of 40 nm Nb/40 nm NbC using m=0.35, IDD=1010mm/mm3, and strain rate of 0.0001 s−1

Grahic Jump Location
Fig. 9

(a) Deformation behavior for individual layer thickness of 40 nm Nb/40 nm NbC at different α* using m=0.35, IDD=1010mm/mm3, and strain rate of 0.0001 s−1 and (b) evolution of statistically stored dislocation density for different alpha_star in (b)

Grahic Jump Location
Fig. 10

Steel with 3 mm layer thickness coated with Nb/NbC multilayer with individual layer thickness of 40 nm Nb/40 nm NbC and total thickness of 0.3 mm

Grahic Jump Location
Fig. 11

Deformation behavior of steel coated with Nb/NbC multilayer under uniaxial tension with strain rate of 0.0001 s−1 (hsteel=3mmandhNb/NbC=0.3mm)

Grahic Jump Location
Fig. 12

Schematic illustration of a solid element and adjacent elements with one integration point for estimating the shear strain gradient

Grahic Jump Location
Fig. 13

(a) Elements of steel and Nb/NbC along the thickness, (b) geometrically necessary dislocation density evolution for the steel and Nb/NbC element at the interface, and (c) statistically stored dislocation density evolution for the steel and Nb/NbC element at the interface

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In