The present study examines the viscoelastic behavior of cancellous bone at low strains and the effects of damage on this viscoelastic behavior. It provides experimental evidence of interaction between stress relaxation behavior and the effect of accumulated damage. The results suggest that damage is at least orthotropic in trabecular bone specimens under uniaxial loading. Simple linear models of viscoelasticity described the time-dependent stress-strain behavior at low strains before and after specimen damage, although better fits of these models were obtained prior to damage. Modeling the observed changes in relaxation times with damage accumulation appears necessary to successfully predict the post-damage viscoelastic response.
Issue Section:
Bone/Orthopedics
1.
Carter
, D. R.
, and Hayes
, W. C.
, 1977, “The Compressive Behavior of Bone as a Two-Phase Porous Structure
,” J. Bone Jt. Surg., Am. Vol.
0021-9355, 59
(7
), pp. 954
–962
.2.
Kabel
, J.
, Odgaard
, A.
, van Rietbergen
, B.
, and Huiskes
, R.
, 1999, “Connectivity and the Elastic Properties of Cancellous Bone
,” Bone (N.Y.)
8756-3282, 24
(2
), pp. 115
–120
.3.
Keaveny
, T. M.
, Guo
, X. E.
, Wachtel
, E. F.
, McMahon
, T. A.
, and Hayes
, W. C.
, 1994, “Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains
,” J. Biomech.
0021-9290, 27
(9
), pp. 1127
–1136
.4.
Keller
, T. S.
, 1994, “Predicting the Compressive Mechanical Behavior of Bone
,” J. Biomech.
0021-9290, 27
(9
), pp. 1159
–1168
.5.
Keyak
, J. H.
, Lee
, I. Y.
, and Skinner
, H. B.
, 1994, “Correlations Between Orthogonal Mechanical Properties and Density of Trabecular Bone: Use of Different Densitometric Measures
,” J. Biomed. Mater. Res.
0021-9304, 28
(11
), pp. 1329
–1336
.6.
Goulet
, R. W.
, Goldstein
, S. A.
, Ciarelli
, M. J.
, Kuhn
, J. L.
, Brown
, M. B.
, and Feldkamp
, L. A.
, 1994, “The Relationship Between the Structural and Orthogonal Compressive Properties of Trabecular Bone
,” J. Biomech.
0021-9290, 27
(4
), pp. 375
–389
.7.
Kabel
, J.
, van Rietbergen
, B.
, Odgaard
, A.
, and Huiskes
, R.
, 1999, “Constitutive Relationships of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,” Bone (N.Y.)
8756-3282, 25
(4
), pp. 481
–486
.8.
Turner
, C. H.
, Cowin
, S. C.
, Rho
, J. Y.
, Ashman
, R. B.
, and Rice
, J. C.
, 1990, “The Fabric Dependence of the Orthotropic Elastic Constants of Cancellous Bone
,” J. Biomech.
0021-9290, 23
(6
), pp. 549
–561
.9.
Ulrich
, D.
, van Rietbergen
, B.
, Laib
, A.
, and Ruegsegger
, P.
, 1999, “The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,” Bone (N.Y.)
8756-3282, 25
(1
), pp. 55
–60
.10.
Parisien
, M. V.
, McMahon
, D.
, Pushparaj
, N.
, and Dempster
, D. W.
, 1988, “Trabecular Architecture in Iliac Crest Bone Biopsies: Intra-Individual Variability in Structural Parameters and Changes With Age
,” Bone (N.Y.)
8756-3282, 9
(5
), pp. 289
–295
.11.
Grote
, H. J.
, Amling
, M.
, Vogel
, M.
, Hahn
, M.
, Posl
, M.
, and Delling
, G.
, 1995, “Intervertebral Variation in Trabecular Microarchitecture Throughout the Normal Spine in Relation to Age
,” Bone (N.Y.)
8756-3282, 16
(3
), pp. 301
–308
.12.
Morgan
, E. F.
, and Keaveny
, T. M.
, 2001, “Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,” J. Biomech.
0021-9290, 34
(5
), pp. 569
–577
.13.
Kothari
, M.
, Keaveny
, T. M.
, Lin
, J. C.
, Newitt
, D. C.
, and Majumdar
, S.
, 1999, “Measurement of Intraspecimen Variations in Vertebral Cancellous Bone Architecture
,” Bone (N.Y.)
8756-3282, 25
(2
), pp. 245
–250
.14.
Zhu
, M.
, Keller
, T. S.
, Moeljanto
, E.
, and Spengler
, D. M.
, 1994, “Multiplanar Variations in the Structural Characteristics of Cancellous Bone
,” Bone (N.Y.)
8756-3282, 15
(3
), pp. 251
–259
.15.
Antonacci
, M. D.
, Hanson
, D. S.
, Leblanc
, A.
, and Heggeness
, M. H.
, 1997, “Regional Variation in Vertebral Bone Density and Trabecular Architecture are Influenced by Osteoarthritic Change and Osteoporosis
,” Spine
0362-2436, 22
(20
), pp. 2393
–2401
.16.
McCubbrey
, D. A.
, Cody
, D. D.
, Peterson
, E. L.
, Kuhn
, J. L.
, Flynn
, M. J.
, and Goldstein
, S. A.
, 1995, “Static and Fatigue Failure Properties of Thoracic and Lumbar Vertebral Bodies and Their Relation to Regional Density
,” J. Biomech.
0021-9290, 28
(8
), pp. 891
–899
.17.
Morgan
, E. F.
, Yeh
, O. C.
, Chang
, W. C.
, and Keaveny
, T. M.
, 2001, “Nonlinear Behavior of Trabecular Bone at Small Strains
,” J. Biomech. Eng.
0148-0731, 123
(1
), pp. 1
–9
.18.
Keaveny
, T. M.
, Wachtel
, E. F.
, and Kopperdahl
, D. L.
, 1999, “Mechanical Behavior of Human Trabecular Bone After Overloading
,” J. Orthop. Res.
0736-0266, 17
, pp. 346
–353
.19.
Pugh
, J. W.
, Rose
, R. M.
, and Radin
, E. L.
, 1973, “Elastic and Viscoelastic Properties of Trabecular Bone: Dependence on Structure
,” J. Biomech.
0021-9290, 6
, pp. 475
–485
.20.
Carter
, D. R.
, and Hayes
, W. C.
, 1976, “Bone Compressive Strength: The Influence of Density and Strain Rate
,” Science
0036-8075, 194
, pp. 1174
–1176
.21.
Linde
, F.
, Norgaard
, P.
, Hvid
, I.
, Odgaard
, A.
, and Soballe
, K.
, 1991, “Mechanical Properties of Trabecular Bone: Dependency on Strain Rate
,” J. Biomech.
0021-9290, 24
(9
), pp. 803
–809
.22.
Bowman
, S. M.
, Keaveny
, T. M.
, Gibson
, L. J.
, Hayes
, W. C.
, and McMahon
, T. A.
, 1994, “Compressive Creep Behavior of Bovine Trabecular Bone
,” J. Biomech.
0021-9290, 27
(3
), pp. 301
–310
.23.
Bowman
, S. M.
, Guo
, X. E.
, Cheng
, D. W.
, Keaveny
, T. M.
, Gibson
, L. J.
, Hayes
, W. C.
, and McMahon
, T. A.
, 1998, “Creep Contributes to the Fatigue Behavior of Bovine Trabecular Bone
,” J. Biomech. Eng.
0148-0731, 120
, pp. 647
–654
.24.
Zilch
, H.
, Rohlmann
, A.
, Bergmann
, G.
, and Kölbel
, R.
, 1980, “Material Properties of Femoral Cancellous Bone in Axial Loading: Part II: Time Dependent Properties
,” Arch. Orthop. Trauma Surg.
0344-8444, 97
, pp. 257
–262
.25.
Deligianni
, D. D.
, Maris
, A.
, and Missirlis
, Y. F.
, 1994, “Stress Relaxation Behaviour of Trabecular Bone Specimens
,” J. Biomech.
0021-9290, 27
(12
), pp. 1469
–1476
.26.
Rincón
, L.
, Frossard
, A.
, Curnier
, A.
, and Zysset
, P. K.
, 2001, “A Rate-Dependent Damage Model for Bovine Trabecular Bone
,” Computer Methods in Biomechanics and Biomedical Engineering
, J.
Middleton
, N. G.
Shrive
, and G. N.
Pande
, eds., Gordon & Breach
, Amsterdam, pp. 161
–166
.27.
Schoenfeld
, C. M.
, Lautenschlager
, E. P.
, and Meyer
, P. R.
, 1974, “Mechanical Properties of Human Cancellous Bone in the Femoral Head
,” Med. Biol. Eng.
0025-696X, 12
(3
), pp. 313
–317
.28.
Dulbecco
, R.
, and Vogt
, M.
, 1954, “Plaque Formation and Isolation of Pure Lines With Poliomyelitis Viruses
,” J. Exp. Med.
0022-1007, 99
, pp. 167
–182
.29.
Gustafson
, M. B.
, Gibson
, V. A.
, Stover
, S. M.
, and Martin
, R. B.
, 1995, “Requirement of Calcium Buffering to Maintain Equine Cannon Bone Stiffness in Saline
,” Proceedings of the 41st Annual Meeting
, Orlando, FL, Feb. 13–16, Orthopaedic Research Society, Chicago, IL, p. 297
.30.
Bensusan
, J. S.
, Davy
, D. T.
, Heiple
, K. G.
, and Verdin
, P. J.
, 1983, “Tensile, Compressive, and Torsional Testing of Cancellous Bone
,” Proceedings of the 29th Annual Meeting
, Anaheim, March 8–10, Orthopaedic Research Society, Chicago, IL, p. 132
.31.
Kopperdahl
, D. L.
, and Keaveny
, T. M.
, 1998, “Yield Strain Behavior of Trabecular Bone
,” J. Biomech.
0021-9290, 31
(7
), pp. 601
–608
.32.
Brear
, K.
, Currey
, J. D.
, Raines
, S.
, and Smith
, K. J.
, 1998, “Density and Temperature Effects on Some Mechanical Properties of Cancellous Bone
,” Eng. Med.
0046-2039, 17
(4
), pp. 163
–167
.33.
Sharp
, D. J.
, Tanner
, K. E.
, and Bonfield
, W.
, 1990, “Measurement of the Density of Trabecular Bone
,” J. Biomech.
0021-9290, 23
(8
), pp. 853
–857
.34.
Galante
, J.
, Rostoker
, W.
, and Ray
, R. D.
, 1970, “Physical Properties of Trabecular Bone
,” Calcif. Tissue Res.
0008-0594, 5
(3
), pp. 236
–246
.35.
Smith
, S. W.
, 1999, The Scientist and Engineer’s Guide to Digital Signal Processing
. 2nd ed., California Technical Publishing
, San Diego.36.
Boresi
, A. P.
, Schmidt
, R. J.
, and Sidebottom
, O. M.
, 1993, Advanced Mechanics of Materials
. 5th ed., John Wiley & Sons
, New York.37.
Cowin
, S. C.
, 1986, “Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,” ASME J. Biomech. Eng.
0148-0731, 108
(1
), pp. 83
–88
.38.
Cowin
, S. C.
, 1985, “The Relationship Between the Elasticity Tensor and the Fabric Tensor
,” Mech. Mater.
0167-6636, 4
, pp. 137
–147
.39.
Kabel
, J.
, van Rietbergen
, B.
, Dalstra
, M.
, Odgaard
, A.
, and Huiskes
, R.
, 1999, “The Role of an Effective Isotropic Tissue Modulus in the Elastic Properties of Cancellous Bone
,” J. Biomech.
0021-9290, 32
(7
), pp. 673
–680
.40.
Davy
, D. T.
, and Jepsen
, K. J.
, 2001, “Bone Damage Mechanics
,” Bone Mechanics Handbook
, S. C.
Cowin
, ed., CRC Press
, New York, pp. 18.11
–18.25
.41.
Lemaitre
, J.
, 1992, A Course on Damage Mechanics
, Springer-Verlag
, New York.42.
Chow
, C. L.
, and Wang
, J.
, 1987, “An Anisotropic Theory of Elasticity for Continnum Damage Mechanics
,” Int. J. Fract.
0376-9429, 33
, pp. 3
–16
.43.
Cordebois
, J. P.
, and Sidoroff
, F.
, 1979, “Damage Induced Elastic Anisotropy
,” Mechanical Behavior of Anisotropic Solids
, Martinus Nijhoff Publishers
, Villard-de-Lans, pp. 761
–774
.44.
Pidaparti
, R. M.
, and Liu
, Y.
, 1997, “Bone Stiffness Changes Due to Microdamage Under Different Loadings
,” Biomed. Mater. Eng.
0959-2989, 7
(3
), pp. 193
–203
.45.
Noble
, B.
, and Daniel
, J. W.
, 1988, Applied Linear Algebra
, 3rd ed, Prentice-Hall
, Englewood Cliffs, NJ.46.
Lubliner
, J.
, 1990, Plasticity Theory
, Macmillan Publishing Co.
, New York.47.
Gill
, P. E.
, Murray
, W.
, and Wright
, M. H.
, 1981, Practical Optimization
, Academic Press
, New York.48.
Bowman
, S. M.
, Gibson
, L. J.
, Hayes
, W. C.
, and McMahon
, T. A.
, 1999, “Results From Demineralized Bone Creep Tests Suggest That Collagen is Responsible for the Creep Behavior of Bone
,” J. Biomech. Eng.
0148-0731, 121
, pp. 253
–251
.49.
Cowin
, S. C.
, 1999, “Bone Poroelasticity
,” J. Biomech.
0021-9290, 32
(3
), pp. 217
–238
.50.
Simkin
, P. A.
, Houglum
, S. J.
, and Pickerell
, C. C.
, 1985, “Compliance and Viscoelasticity of Canine Shoulders Loaded In Vitro
,” J. Biomech.
0021-9290, 18
, pp. 735
–743
.51.
Cervera
, M.
, Oliver
, J.
, and Prato
, T.
, 1999, “Thermo-Chemo-Mechanical Model for Concrete. II: Damage and Creep
,” J. Eng. Mech.
0733-9399, 125
(9
), pp. 1028
–1039
.52.
Lee
, H.-J.
, and Kim
, Y. R.
, 1998, “Viscoelastic Continuum Damage Model of Asphalt Concrete With Healing
,” J. Eng. Mech.
0733-9399, 124
(11
), pp. 1224
–1232
.53.
Park
, S. W.
, Kim
, Y. R.
, and Schapery
, R. A.
, 1996, “A Viscoelastic Continuum Damage Model and its Application to Uniaxial Behavior of Asphalt Concrete
,” Mech. Mater.
0167-6636, 24
, pp. 241
–255
.54.
van Zijl
, G. P. A. G.
, de Borst
, R.
, and Rots
, J. G.
, 2001, “A Numerical Model for the Time-Dependent Cracking of Cementitious Materials
,” Int. J. Numer. Methods Eng.
0029-5981, 52
, pp. 637
–654
.55.
Knott
, D. F.
, 2000, “Age-Related Differences in the Tensile Damage Accumulation Behavior of Adult Human Cortical Bone
,” M.S. thesis, Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH.56.
Fondrk
, M. T.
, Bahniuk
, E. H.
, and Davy
, D. T.
, 1999, “A Damage Model for Nonlinear Tensile Behavior of Cortical Bone
,” J. Biomech. Eng.
0148-0731, 121
(5
), pp. 533
–541
.57.
Moore
, T. L.
, and Gibson
, L. J.
, 2001, “Modeling Modulus Reduction in Bovine Trabecular Bone Damaged in Compression
,” J. Biomech. Eng.
0148-0731, 123
(6
), pp. 613
–622
.58.
Zysset
, P. K.
, and Curnier
, A.
, 1996, “A 3D Damage Model for Trabecular Bone Based on Fabric Tensors
,” J. Biomech.
0021-9290, 29
(12
), pp. 1549
–1558
.59.
Niebur
, G. L.
, Yeh
, O. C.
, and Keaveny
, T. M.
, 2002, “Damage Evolution in Trabecular Bone is Anisotropic
,” Proceedings of the 48th Annual Meeting
, Dallas, Feb. 10–13, Orthopaedic Research Society, Chicago, IL, p. 323
.60.
Bredbenner
, T. L.
, 2003, “Damage Modeling of Vertebral Trabecular Bone
,” Ph.D. dissertation, Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH.61.
Joo
, W.
, Bensusan
, J.
, Jepsen
, K. J.
, and Davy
, D.
, 2002, “Effect of Recovery Time and Test Conditions on Tensile Damage Measures in Cortical Bone
,” Proceedings of the 48th Annual Meeting
, Dallas, TX, Feb. 10–13, Orthopaedic Research Society, Chicago, IL, p. 547
.62.
Turner
, C. H.
, and Cowin
, S. C.
, 1988, “Errors Induced by Off-Axis Measurement of the Elastic Properties of Bone
,” J. Biomech. Eng.
0148-0731, 110
, pp. 213
–215
.63.
Haddock
, S. M.
, Yeh
, O. C.
, Mummaneni
, P. V.
, Rosenberg
, W. S.
, and Keaveny
, T. M.
, 2000, “Fatigue Behavior of Human Vertebral Trabecular Bone
,” Proceedings of the 46th Annual Meeting
, Orlando, March 12–15, Orthopaedic Research Society, Chicago, IL, p. 733
.64.
Keaveny
, T. M.
, Guo
, X. E.
, and Wachtel
, E. F.
, 1993, “Trabecular Bone is Linearly Elastic Up to Yielding and Yields by Cracking
,” Proceedings of the 39th Annual Meeting
, San Francisco, Feb. 15–18, Orthopaedic Research Society, Chicago, IL, p. 586
.65.
Wachtel
, E. F.
, and Keaveny
, T. M.
, 1997, “Dependence of Trabecular Damage on Mechanical Strain
,” J. Orthop. Res.
0736-0266, 15
(5
), pp. 781
–787
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.