The Movement of the interstitial fluid in extracellular matrices not only affects the mechanical properties of soft tissues, but also facilitates the transport of nutrients and the removal of waste products. In this study, we aim to quantify interstitial fluid movement and fluid-matrix interaction in a new loading configuration—confined tissue indentation, using a poroelastic theory. The tissue sample sits in a cylindrical chamber and loading is applied on the top central surface of the specimen by a porous indenter that is fixed on the specimen. The interaction between the solid and the fluid is examined using a finite element method under ramp and cyclic loads. Typical compression-relaxation responses of the specimen are observed in a ramp load. Under a cyclic load, the system reaches a dynamic equilibrium after a number of loading cycles. Fluid circulation, with opposite directions in the loading and unloading phases in the extracellular matrix, is observed. The most significant variation in the fluid pressure locates just beneath the indenter. Fluid pressurization arrives at equilibrium much faster than the solid matrix deformation. As the loading frequency increases, the location of the peak pressure oscillation moves closer to the indenter and the magnitude of the pressure oscillation increases. Concomitantly, the axial stress variation of the solid matrix is reduced. It is found that interstitial fluid movement helps to alleviate severe strain of the solid matrix beneath the indenter. This study quantifies the interaction between the interstitial fluid and the extracellular matrix by decomposing the loading response of the specimen into the “transient” and “dynamic equilibrium” phases. Confined indentation in this manuscript gives a better representation of some in vitro and in vivo loading configurations where the indenter covers part of the top surface of the tissue.

1.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
, pp.
377
394
.
2.
Winlove
,
C. P.
, and
Parker
,
K. H.
, 1995, “
The Physiological Functions of Extracellular Matrix Macromolecules
,” in
Interstitium, Connective Tissue and Lymphatics
,
R. K.
Reed
,
N. G.
McHale
,
J. L.
Bert
,
C. P.
Winlove
, and
G. A.
Laine
, eds.,
Portland Press
,
London
, pp.
147
165
.
3.
Terzaghi
,
K.
, 1943,
Theoretical Soil Mechanics
,
Wiley
,
New York
.
4.
Biot
,
M. A.
, 1962, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
0021-8979,
33
, pp.
1482
1498
.
5.
Simon
,
B. R.
, 1992, “
Multiphasic Poroelastic Finite Element Models for Soft Tissue Structures
,”
Appl. Mech. Rev.
0003-6900,
45
(
6
), pp.
191
218
.
6.
Wang
,
W.
, and
Parker
,
K. H.
, 1995, “
The Effect of Deformable Porous Surface Layers on the Motion of a Sphere in a Narrow Cylindrical Tube
,”
J. Fluid Mech.
0022-1120,
283
, pp.
287
305
.
7.
Wang
,
W.
, 2007, “
Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
324
329
.
8.
Craine
,
R. E.
,
Green
,
A. E.
, and
Naghdi
,
P. M.
, 1970, “
A Mixture of Viscous Elastic Materials With Different Constituent Temperature
,”
Q. J. Mech. Appl. Math.
0033-5614,
23
, pp.
171
184
.
9.
Kenyon
,
D. E.
, 1976, “
The Theory of an Incompressible Solid-Fluid Mixture
,”
Arch. Ration. Mech. Anal.
0003-9527,
62
, pp.
131
147
.
10.
Elhers
,
W.
, 2002, “
Foundations of Multiphasic and Porous Materials
,” in
Porous Media: Theory, Experiments and Numerical Applications
,
W.
Ehlers
and
J.
Bluhm
, eds.,
Springer-Verlag
,
Berlin
, pp.
3
86
.
11.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
12.
Goldsmith
,
A. A. J.
,
Hayes
,
A.
, and
Clift
,
S. E.
, 1996, “
Application of Finite Elements to the Stress Analysis of Articular Cartilage
,”
Med. Eng. Phys.
1350-4533,
18
(
2
), pp.
89
98
.
13.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
, 1992, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
0021-9290,
25
(
9
), pp.
1027
1045
.
14.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1986, “
The Kinetics of Chemically Induced Nonequilibrium Swelling of Articular Cartilage and Corneal Stroma
,”
ASME J. Biomech. Eng.
0148-0731,
109
, pp.
79
89
.
15.
Rajagopal
,
K. R.
,
Wineman
,
A. S.
, and
Vaishnav
,
R. N.
, 1981, “
Application of the Theory of Interacting Media to Diffusion Processed in Soft Tissue
,”
Proceedings of the Biomechanics Division, ASME Winter Annual Meeting
,
Washington, DC.
16.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
, pp.
499
506
.
17.
Wang
,
C. B.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2002, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
0021-9290,
36
, pp.
339
353
.
18.
Suh
,
J. K.
, and
DiSilvestro
,
M. R.
, 1999, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
528
535
.
19.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviours of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
245
258
.
20.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissue Containing Multi-Electrolytes: Passive Transport and Swelling Behaviours
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
169
180
.
21.
Spilker
,
R. L.
, and
Suh
,
J. K.
, 1990, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues
,”
Comput. Struct.
0045-7949,
35
(
4
), pp.
425
439
.
22.
Luenberger
,
D. G.
, 1984,
Linear and Nonlinear Programming
,
Addison-Wesley
,
New York
.
23.
Simon
,
B. R.
,
Wu
,
J. S. S.
,
Carlton
,
M. W.
,
France
,
E. P.
,
Evans
,
J. H.
, and
Kazarian
,
L. E.
, 1985, “
Structural Models for Human Spinal Motion Segments Based on a Poroelastic View of the Intervertebral Disc
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
327
335
.
24.
Reddy
,
J. N.
, and
Gartling
,
D. K.
, 2001,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
CRC
,
London
.
25.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
, pp.
111
123
.
26.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
, 1995, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1055
1066
.
27.
Lee
,
D. A.
,
Knight
,
M. M.
,
Bolton
,
J. F.
,
Idowu
,
B. D.
,
Kayser
,
M. V.
, and
Bader
,
D. L.
, 2000, “
Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Sub-Cellular Levels
,”
J. Biomech.
0021-9290,
33
(
1
), pp.
81
95
.
28.
Lyyra
,
T.
,
Kiviranta
,
I.
,
Vaatainen
,
U.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 1999, “
In Vivo Characterization of Indentation Stiffness of Articular Cartilage in the Normal Human Knee
,”
J. Biomed. Mater. Res.
0021-9304,
48
(
4
), pp.
482
487
.
29.
Lu
,
X. L.
,
Sun
,
D. D.
,
Guo
,
X. E.
,
Chen
,
F. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
Indentation Determined Mechanoelectrochemical Properties and Fixed Charge Density of Articular
,”
Ann. Biomed. Eng.
0090-6964,
32
(
3
), pp.
370
379
.
30.
Wong
,
M.
, and
Carter
,
D. R.
, 2003, “
Articular Cartilage Functional Histomorphology and Mechanobiology: A Research Perspective
,”
Bone
8756-3282,
33
, pp.
1
13
.
31.
Parkkinen
,
J. J.
,
Lammi
,
M. J.
,
Hleminen
,
H. J.
, and
Tammi
,
M.
, 1992, “
Local Stimulation of Proteoglycan Synthesis in Articular Cartilage Explant by Dynamic Compression In Vitro
,”
J. Orthop. Res.
0736-0266,
10
, pp.
610
620
.
32.
Barry
,
S. I.
, and
Aldis
,
G. K.
, 1991, “
Unsteady Fluid Flow Induced Deformation of Porous Material
,”
Int. J. Non-Linear Mech.
0020-7462,
26
, pp.
687
699
.
33.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues. I. Biocomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
0006-355X,
24
, pp.
173
187
.
34.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
602
614
.
35.
Lu
,
Y.
, 2006, “
Theoretical Studies on the Transport of Fluid and Solutes in Soft Tissues and Across Biological Membrane
,” Ph.D. thesis, Queen Mary, University of London, London.
36.
Cuvelier
,
C.
,
Segal
,
A.
, and
van Steenhoven
,
A. A.
, 1985,
Finite Elements Methods and Navier-Stokes Equations
,
Reidel
,
Dordrecht
.
37.
Ehlers
,
W.
, and
Markert
,
B.
, 2001, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
418
424
.
38.
Saad
,
Y.
, 1996,
Iterative Methods for Sparse Linear System
,
PWS
,
New York
.
39.
Weiss
,
J. A.
, and
Maakestad
,
B. J.
, 2006, “
Permeability of Human Medial Collateral Ligament in Compression Transverse to Collagen Fibre Direction
,”
J. Biomech.
0021-9290,
39
, pp.
276
283
.
40.
Palmer
,
J. L.
,
Bertone
,
A. L.
,
Mansour
,
J.
,
Carter
,
B. G.
, and
Malemud
,
T. J.
, 1995, “
Biomechanical Properties of Third Carpal Articular Cartilage in Exercised and Nonexercised Horses
,”
J. Orthop. Res.
0736-0266,
13
, pp.
854
860
.
41.
Vermilyea
,
M. E.
, and
Spilker
,
R. L.
, 1992, “
A Hybrid Finite Element Formulation of the Linear Biphasic Equations for Hydrated Soft Tissue
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
567
593
.
42.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
191
201
.
43.
Lu
,
Y.
, and
Wang
,
W.
, 2004, “
Solute Transport in Porous Medium Under External Loads
,”
2004 ASME Heat Transfer/Fluids Engineering Summer Conference
,
Charlotte, NC
, pp.
1
4
, Paper No. HT-FED04-56159.
44.
Kelkar
,
R.
, and
Ateshian
,
G. A.
, 1999, “
Contact Creep of Biphasic Cartilage Layers
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
137
145
.
You do not currently have access to this content.