The implantation of a cemented or cementless femoral stem changes the physiological load transfer on the femur producing an effect on the bone called adaptative remodeling. The patterns of this remodeling are attributed to mechanical and biological factors, and those changes in bone mineral density have been determined in long-term densitometry studies. This technique has proved to be a useful tool able to quantify small changes in bone density in different femoral areas, and it is considered to be ideal for long-term studies. On the other hand, the finite element (FE) simulation allows the study of the biomechanical changes produced in the femur after the implantation of a femoral stem. The aim of this study was to contrast the findings obtained from a 5 year follow-up densitometry study that used a newly designed femoral stem (73 patients were included in this study), with the results obtained using a finite element simulation that reproduces the pattern of load transfer that this stem causes on the femur. In this study we have obtained a good comparison between the results of stress of FE simulation and the bone mass values of the densitometry study establishing a ratio between the increases in stress (%) versus the increases in bone density (%). Hence, the changes in bone density in the long term, compared with the healthy femur, are due to different load transfers after stem implantation. It has been checked that in the Gruen zone 7 at 5 years, the most important reduction in stress (7.85%) is produced, which coincides with the highest loss of bone mass (23.89%). Furthermore, the simulation model can be used with different stems with several load conditions and at different time periods to carry out the study of biomechanical behavior in the interaction between the stem and the femur, explaining the evolution of bone density in accordance to Wolff’s law, which validates the simulation model.

1.
Huiskes
,
R.
,
Weinans
,
H.
, and
Dalstra
,
M.
, 1989, “
Adaptative Bone Remodelling and Biomechanical Design Considerations for Noncemented Total Hip Arthroplasty
,”
Orthopedics
,
12
, pp.
1255
1267
. 0147-7447
2.
Sychter
,
C. J.
, and
Engh
,
C. A.
, 1996, “
The Influence of Clinical Factor on Periprosthetic Bone Remodelling
,”
Clin. Orthop. Relat. Res.
,
322
, pp.
285
292
. 0009-921X
3.
Rubash
,
H. E.
,
Sinha
,
R. K.
,
Shanbhag
,
A. S.
, and
Kim
,
S. Y.
, 1998, “
Pathogenesis of Bone Loss After Total Hip Arthroplasty
,”
Orthop. Clin. North Am.
0030-5898,
29
(
2
), pp.
173
186
.
4.
McAuley
,
J.
,
Sychterz
,
Ch.
, and
Ench
,
C. A.
, 2000, “
Influence of Porous Coating Level on Proximal Femoral Remodelling
,”
Clin. Orthop. Relat. Res.
,
371
, pp.
146
153
. 0009-921X
5.
Gibbons
,
C. E. R.
,
Davies
,
A. J.
,
Amis
,
A. A.
,
Olearnik
,
H.
,
Parker
,
B. C.
,
Scott
,
J. E.
, 2001, “
Periprosthetic Bone Mineral Density Changes With Femoral Components of Differing Design Philosophy
,”
Int. Orthop.
0341-2695,
25
, pp.
89
92
.
6.
Glassman
,
A. H.
,
Crowninshield
,
R. D.
,
Schenck
,
R.
, and
Herberts
,
P.
, 2001, “
A Low Stiffness Composite Biologically Fixed Prostheses
,”
Clin. Orthop. Relat. Res.
,
393
, pp.
128
136
. 0009-921X
7.
Tanzer
,
M.
,
Maloney
,
W. J.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1992, “
The Progression of Femoral Cortical Osteolysis in Association With Total Hip Arthroplasty Without Cement
,”
J. Bone Jt. Surg., Am. Vol.
,
74
, pp.
404
410
. 0021-9355
8.
Bugbee
,
W.
,
Culpepper
,
W.
,
Engh
,
A.
, and
Engh
,
C. A.
, 1997, “
Long-Term Clinical Consequences of Stress-Shielding After Total Hip Arthroplasty Without Cement
,”
J. Bone Jt. Surg., Am. Vol.
,
79
, pp.
1007
1012
. 0021-9355
9.
Hellman
,
E. J.
,
Capello
,
W. N.
, and
Feinberg
,
J. R.
, 1999, “
Omnifit Cementless Total Hip Arthroplasty: A 10-Years Average Follow Up
,”
Clin. Orthop. Relat. Res.
,
364
, pp.
164
174
. 0009-921X
10.
Engh
,
C. A.
, Jr.
,
Young
,
A. M.
,
Engh
,
C. A.
, Sr.
, and
Hopper
,
R. H.
, Jr.
, 2003, “
Clinical Consequences of Stress Shielding After Porous-Coated Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
417
, pp.
157
163
. 0009-921X
11.
Sinha
,
R. K.
,
Dungy
,
D. S.
, and
Yeon
,
H. B.
, 2004, “
Primary Total Hip Arthroplasty With a Proximally Porous-Coated Femoral Stem
,”
J. Bone Jt. Surg., Am. Vol.
,
86
(
6
), pp.
1254
1261
. 0009-921X
12.
Braun
,
A.
,
Papp
,
J.
, and
Reiter
,
A.
, 2003, “
The Periprosthetic Bone Remodelling Process Signs of Vital Bone Reaction
,”
Int. Orthop.
,
27
, (
S1
), pp.
7
10
. 0341-2695
13.
Herrera
,
A.
,
Canales
,
V.
,
Anderson
,
J.
,
Garcia-Araujo
,
C.
,
Murcia-Mazon
,
A.
, and
Tonino
,
A. J.
, 2004, “
Seven to Ten Years Follow Up of an Anatomic Hip Prosthesis
,”
Clin. Orthop. Relat. Res.
,
423
, pp.
129
137
. 0009-921X
14.
Canales Cortés
,
V.
,
Panisello
,
J. J.
,
Herrera
,
A.
,
Peguero
,
A.
,
Martínez
,
A.
,
Herrero
,
L.
, and
García-Dihinx
,
L.
, 2006, “
Ten Year Follow-Up of an Anatomical Hydroxyapatite-Coated Total Hip Prosthesis
,”
Int. Orthop.
,
30
, pp.
84
90
. 0341-2695
15.
Tonino
,
A. J.
,
Therin
,
M.
, and
Doyle
,
C.
, 1999, “
Hydroxyapatite Coated Femoral Stems: Histology and Histomorphometry Around Five Components Retrieved at Postmortem
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
81
, pp.
148
154
.
16.
Nourissat
,
C.
,
Adrey
,
J.
,
Berteaux
,
D.
,
Gueret
,
A.
,
Goalard
,
C.
, and
Hamon
,
G.
, 1995, “
The ABG Standard Hip Prosthesis: Five Year Results
,”
Hydroxiapatite Coated Hip and Knee Arthroplasty
,
J. A.
Epinette
and
R. G. T.
Geesink
, eds.,
Expansion Cientifique Francaise
,
Paris
, pp.
227
238
.
17.
Engh
,
C. A.
, Jr.
,
Mc Auley
,
J. P.
,
Sychterz
,
C. J.
,
Sacco
,
M. E.
, and
Engh
,
C. A.
, Sr.
, 2000, “
The Accuracy and Reproducibility of Radiographic Assessment Of Stress-Shielding
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
82A
, pp.
1414
1420
.
18.
Kroger
,
H.
,
Miettinen
,
H.
,
Arnala
,
I.
,
Koski
,
E.
,
Rushton
,
N.
,
Suomalainen
,
O.
, 1996, “
Evaluation of Periprosthetic Bone Using Dual Energy X-Ray Absorptiometry: Precision of the Method and Effect of Operation on Bone Mineral Density
,”
J. Bone Miner. Res.
,
11
, pp.
1526
1530
. 0884-0431
19.
Rosenthall
,
L.
,
Bobyn
,
J. D.
, and
Tanzer
,
M.
, 1999, “
Bone Densitometry: Influence of Prosthetic Design and Hydroxyapatite Coating on Regional Adaptative Bone Remodeling
,”
Int. Orthop.
,
23
, pp.
325
329
. 0341-2695
20.
Schmidt
,
R.
,
Nowak
,
T.
,
Mueller
,
L.
, and
Pitto
,
R.
, 2004, “
Osteodensitometry After Total Hip Replacement With Uncemented Taper-Design Stem
,”
Int. Orthop.
,
28
, pp.
74
77
. 0341-2695
21.
Wolff
,
J.
, 1892,
Das Gesetz der Tansformation des Knochens
,
Hirschwald
,
Berlin
.
22.
Smart
,
R. C.
,
Barbagallo
,
S.
,
Slater
,
G. L.
,
Kuo
,
R. S.
,
Butler
,
S. P.
,
Drummond
,
R. P.
,
Sekel
,
R.
, 1996, “
Measurement of Periprosthetic Bone Density in Hip Arthroplasty Using a Dual Energy X-Ray Absorptiometry
,”
J. Arthroplasty
,
11
, pp.
445
452
. 0883-5403
23.
Panisello
,
J. J.
,
Herrero
,
L.
,
Canales
,
V.
,
Herrera
,
A.
,
Martínez
,
A.
, and
Mateo
,
J.
, 2008, “
Long-Term Remodelling in Proximal Femur Around a Hydroxyapatite-Coated Anatomic Stem. Ten Years Densitometric Follow-Up
,”
J. Arthroplasty
0883-5403,
24
, pp.
56
64
.
24.
Senalp
,
A. Z.
,
Kayabasi
,
O.
, and
Kurtaran
,
H.
, 2007, “
Static, Dynamic and Fatigue Behaviour of Newly Designed Stem Shapes for Hip Prosthesis Using Finite Element Analysis
,”
Mater. Des.
0264-1275,
28
, pp.
1577
1583
.
25.
Kayabasi
,
O.
, and
Erzincanli
,
F.
, 2006, “
Finite Element Modelling and Analysis of a New Cemented Hip Prosthesis
,”
Adv. Eng. Software
0965-9978,
37
, pp.
477
483
.
26.
Kuiper
,
J. H.
, and
Huiskes
,
R.
, 1997, “
The Predictive Value of Stress Shielding for Quantification Of Adaptative Bone Resorption Around Hip Replacement
,”
J. Biomech. Eng.
0148-0731,
119
(
3
), pp.
228
31
.
27.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1994, “
Effects of Fit and Bonding Characteristics of Femoral Stems on Adaptative Bone Remodelling
,”
J. Biomech. Eng.
0148-0731,
116
(
4
), pp.
393
400
.
28.
Kerner
,
J.
,
Huiskes
,
R.
,
van Lenthe
,
G. H.
,
Weinans
,
H.
,
van Rietbergen
,
B.
,
Engh
,
C. A.
, and
Amis
,
A. A.
, 1999, “
Correlation Between Pre-Operative Periprosthetic Bone Density and Post-Operative Bone Loss in THA can be Explained By Strain-Adaptative Remodelling
,”
J. Biomech.
0021-9290,
32
, pp.
695
703
.
29.
Turner
,
A. W. L.
,
Gillies
,
R. M.
,
Sekel
,
R.
,
Morris
,
P.
,
Bruce
,
W.
, and
Walsh
,
W. R.
, 2005, “
Computational Bone Remodelling Simulations and Comparisons With DEXA Results
,”
J. Orthop. Res.
0736-0266,
23
, pp.
705
712
.
30.
Karachalios
,
T.
,
Tsatsaronis
,
Ch.
,
Efraimis
,
G.
,
Papadelis
,
P.
,
Lyritis
,
G.
,
Diakoumopoulos
,
G.
, 2004, “
The Long-Term Clinical Relevance of Calcar Atrophy Caused by Stress Shielding in Total Hip Arthroplasty
,”
J. Arthroplasty
,
19
, pp.
469
475
. 0883-5403
31.
Ohta
,
H.
,
Kobayashi
,
S.
,
Saito
,
N.
,
Nawata
,
M.
,
Horiuchi
,
H.
,
Takaoka
,
K.
, 2003, “
Sequential Changes in Periprosthetic Bone Mineral Density Following Total Hip Arthroplasty: A 3-Year Follow-Up
,”
J. Bone Miner. Metab.
,
21
, pp.
229
233
. 0914-8779
32.
Nishii
,
T.
,
Sugano
,
N.
,
Masuhara
,
K.
,
Shibuya
,
T.
,
Ochi
,
T.
,
Tamura
,
S.
, 1997, “
Longitudinal Evaluation of Time Related Bone Remodeling After Cementless Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
339
, pp.
121
131
. 0009-921X
33.
Rahmy
,
A. I.
,
Gosens
,
T.
,
Blake
,
G. M.
,
Tonino
,
A.
, and
Fogelman
,
I.
, 2004, “
Periprosthetic Bone Remodelling of Two Types of Uncemented Femoral Implant With Proximal Hydroxyapatite Coating: A 3-Year Follow Up Study Addressing the Influence of Prosthetic Design and Preoperative Bone Density on Periprosthetic Bone Loss
,”
Osteoporosis Int.
,
15
, pp.
281
289
. 0937-941X
34.
van der Val
,
B. C.
,
Rahmy
,
A.
,
Grimm
,
B.
,
Heyligers
,
I.
, and
Tonino
,
A.
, 2006, “
Preoperative Bone Quality as a Factor in Dual-Energy X-Ray Absorptiometry Analysis Comparing Bone Remodelling Between Two Implant Types
,”
Int. Orthop.
0341-2695,
32
, pp.
39
45
.
35.
Panisello
,
J. J.
,
Herrero
,
L.
,
Herrera
,
A.
,
Canales
,
V.
,
Martinez
,
A. A.
, and
Cuenca
,
J.
, 2006, “
Bone Remodelling Alter Total Hip Arthroplasty Using an Uncemented Anatomic Femoral Stem: A Three-Year Prospective Study Using Bone Densitometry
,”
J. Orthop. Surg.
,
14
(
1
), pp.
32
7
. 1022-5536
36.
Merle D’Aubigne
,
R.
, and
Postel
,
M.
, 1954, “
Functional Results of Hip Arthroplasty With Acrylic Prostheses
,”
J. Bone Jt. Surg., Am. Vol.
,
36
, pp.
451
475
. 0021-9355
37.
Engh
,
C. A.
,
Massin
,
P.
, and
Suthers
,
K. E.
, 1990, “
Roentgenographic Assessment of the Biologic Fixation of Porous-Surfaced Femoral Component
,”
Clin. Orthop. Relat. Res.
,
257
, pp.
107
128
. 0009-921X
38.
Cohen
,
B.
, and
Rushton
,
N.
, 1995, “
Accuracy of DEXA Measurement of Bone Mineral Density After Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77
, pp.
479
483
.
39.
Lattanzi
,
R.
,
Baruffaldi
,
F.
,
Zannoni
,
C.
, and
Viceconti
,
M.
, 2004, “
Specialised CT Scan Protocols for 3-D Pre-Operative Planning of Total Hip Replacement
,”
Med. Eng. Phys.
,
26
(
3
), pp.
237
45
. 1350-4533
40.
42.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
43.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Forces During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
, pp.
969
990
.
44.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1997, “
Acrylic Cement Creeps but Does Not Allow Much Subsidence of Femoral Stems
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
79
(
4
), pp.
665
669
.
45.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
, 1984, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
, pp.
349
361
.
46.
Meunier
,
A.
,
Riot
,
O.
,
Christel
,
P.
,
Katz
,
J. L.
, and
Sedel
,
L.
, 1989, “
Inhomogeneities in anisotropic elastic constants of cortical bone
,”
Ultrason. Symp. Proc.
,
2
, pp.
1015
1018
. 0021-9290
47.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
The Elastic Properties of Trabecular and Cortical Bone Tissues Are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
0021-9290,
32
, pp.
437
441
.
48.
1973,
Mechanical Properties of Bone
,
F. G.
Evans
, ed,
American Lecture Series
,
Springfield, IL
.
49.
Jacobs
,
C. R.
, 1994, “
Numerical Simulation of Bone Adaptation to Mechanical Loading
,” Ph.D. thesis, Stanford University, Stanford.
50.
Ashman
,
R. B.
, and
Rho
,
J. Y.
, 1988, “
Elastic Modulus of Trabecular Bone Material
,”
J. Biomech.
0021-9290,
21
, pp.
177
181
.
51.
Ionescu
,
I.
,
Conway
,
T.
,
Schonning
,
A.
,
Almutairi
,
M.
, and
Nicholson
,
D. W.
, 2003, “
Solid Modeling and Static Finite Element Analysis of the Human Tibia
,”
Summer Bioengineering Conference
, Key Biscayne, FL, Jun., pp.
25
29
.
52.
2008, MatWeb, Material Property Data, website: http://www.matweb.com/http://www.matweb.com/.
53.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
, 1995, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
1350-4533,
17
(
5
), pp.
347
355
.
54.
Panisello
,
J. J.
,
Canales
,
V.
,
Herrero
,
L.
,
Herrera
,
A.
,
Mateo
,
J.
, and
Caballero
,
M. J.
, 2008, “
Changes in Periprosthetic Bone Remodelling After Redesigning an Anatomic Cementless Item
,”
Int. Orthop.
0341-2695, online.
55.
Brodner
,
W.
,
Bitzan
,
P.
,
Lomoschitz
,
F.
,
Krepler
,
P.
,
Jankovsky
,
R.
,
Lehr
,
S.
,
Kainberger
,
F.
,
Gottsauner-Wolf
,
F.
, 2004, “
Changes in Bone Mineral Density in the Proximal Femur After Cementless Total Hip Arthroplasty. A Five-Year Longitudinal Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
86
, pp.
20
26
.
56.
Pitto
,
RP
,
Bhargava
,
A
,
Pandit
,
S
,
Walker
,
C
,
Munro
,
JT
, 2007, “
Quantitative CT-Assisted Osteodensitometry of Femoral Adaptative Bone Remodelling After Uncemented Total Hip Arthroplasty
,”
Int. Orthop.
0341-2695,
32
, pp.
589
595
.
57.
Schmidt
,
R.
,
Mueller
,
L.
,
Nowak
,
T. E.
, and
Pitto
,
R. P.
, 2003, “
Clinical Outcome and Periprosthetic Bone Remodelling of an Uncemented Femoral Component With Taper Design
,”
Int. Orthop.
,
27
, pp.
204
207
. 0341-2695
58.
El Maraghy
,
A. W.
,
Schemitsch
,
E. H.
, and
Waddell
,
J. P.
, 1999, “
Greater Trochanter Blood Flow During Total Hip Arthroplasty Using a Posterior Approach
,”
Clin. Orthop. Relat. Res.
,
363
, pp.
151
157
. 0009-921X
59.
Hupel
,
T. M.
,
Schemitsch
,
E. H.
,
Aksenov
,
S. A.
, and
Waddell
,
J. P.
, 2000, “
Blood Flow Changes to the Proximal Femur During Total Hip Arthroplasty
,”
Can. J. Surg.
,
43
, pp.
359
364
. 0008-428X
60.
Korovessis
,
P.
,
Piperos
,
G.
,
Michael
,
A.
,
Baikousis
,
A.
, and
Stamatakis
,
M.
, 1997, “
Changes in Bone Mineral Density Around a Stable Uncemented Total Hip Arthroplasty
,”
Int. Orthop.
,
21
, pp.
30
4
. 0341-2695
61.
Kröger
,
H.
,
Venesmaa
,
P.
,
Jurvelin
,
J.
,
Miettinen
,
H.
,
Suomalainen
,
O.
, and
Alhava
,
E.
, 1998, “
Bone Density at the Proximal Femur After Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
352
, pp.
66
74
. 0009-921X
62.
Martini
,
F.
,
Lebherz
,
C.
,
Mayer
,
F.
,
Leichtle
,
U.
,
Kremling
,
E.
, and
Sell
,
S.
, 2000, “
Precision of the Measurements of Periprosthetic Bone Mineral Density Around Hips With a Custom-Made Femoral Stem
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
82
, pp.
1065
71
.
63.
Kärrholm
,
J.
,
Anderberg
,
Ch.
,
Snorrason
,
F.
,
Thanner
,
J.
,
Langeland
,
N.
,
Malchau
,
H.
,
Herberts
,
P.
, 2002, “
Evaluation of a Femoral Stem With Reduced Stiffness
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84
, pp.
1651
1658
.
64.
Niinimäki
,
T.
,
Junila
,
J.
, and
Jalovaara
,
P.
, 2001, “
A Proximal Fixed Anatomic Femoral Stem Reduces Stress Shielding
,”
Int. Orthop.
,
25
, pp.
85
88
. 0341-2695
65.
Tonino
,
A.
, and
Rahmy
,
A.
, 2000, “
The Hydroxyapatite ABG Hip System
,”
J. Arthroplasty
,
15
, pp.
274
282
. 0883-5403
66.
Sychterz
,
C. J.
,
Claus
,
A. M.
, and
Engh
,
C. A.
, 2002, “
What We Have Learned About Long-Term Cementless Fixation From Autopsy Retrieval
,”
Clin. Orthop. Relat. Res.
0009-921X,
405
, pp.
79
91
.
67.
Zerahn
,
B.
,
Storgaard
,
M.
,
Johansen
,
T.
,
Olsen
,
C.
,
Lausten
,
G.
,
Kanstrup
,
I. L.
, 1998, “
Changes in Bone Mineral Density Adjacent to Two Biomechanically Different Types of Cementless Femoral Stems in Total Hip Arthroplasty
,”
Int. Orthop.
,
22
, pp.
225
229
. 0341-2695
68.
Nagi
,
O. N.
,
Kumar
,
S.
, and
Aggarwal
,
S.
, 2006, “
The Uncemented Isoelastic/Isotitan Total Hip Arthroplasty: A 10–15 Years Follow-Up With Bone Mineral Density Evaluation
,”
Acta Orthop. Belg.
,
72
(
1
), pp.
55
64
. 0001-6462
69.
Ahlborg
,
H.
,
Johnell
,
O.
, and
Karlsson
,
M.
, 2004, “
An Age-Related Medullary Expansion can have Implications for the Long-Term Fixation of Hip Prostheses
,”
Acta Orthop. Scand.
,
75
(
2
), pp.
154
159
. 0001-6470
You do not currently have access to this content.