The complex structure and properties of biological tissues as well as their in situ environment often make it difficult to self-heal. A suitable replacement tissue may be created in vitro through tissue engineering approaches and mechanical stimulation of tissue constructs. A new biaxial bioreactor was designed, constructed, and evaluated for the purposes of developing constructs with specific functional characteristics. Once constructed and assembled, the bioreactor was tested for position accuracy and application of strain. Additionally, a tissue construct was tested in the chamber and compared with a nonstimulated construct. Results showed high position accuracy, but some loss between applied strain via grip movement and strain experienced by the scaffold. The tested construct exhibited an increase in cells and matrix deposition in comparison to the nonstimulated construct. This biaxial bioreactor will be useful for mechanically stimulating tissue constructs in two perpendicular directions to create implants for tissues requiring preferred compressive and tensile resistances.

1.
Ratcliffe
,
A.
, and
Niklason
,
L. E.
, 2002, “
Bioreactors and Bioprocessing for Tissue Engineering
,”
Ann. N.Y. Acad. Sci.
,
961
, pp.
210
215
. 0077-8923
2.
Langelier
,
E.
,
Rancourt
,
D.
,
Bouchard
,
S.
,
Lord
,
C.
,
Stevens
,
P. P.
,
Germain
,
L.
, and
Auger
,
F. A.
, 1999, “
Cyclic Traction Machine for Long-Term Culture of Fibroblast-Populated Collagen Gels
,”
Ann. Biomed. Eng.
0090-6964,
27
(
1
), pp.
67
72
.
3.
Juncosa-Melvin
,
N.
,
Shearn
,
J. T.
,
Boivin
,
G. P.
,
Gooch
,
C.
,
Galloway
,
M. T.
,
West
,
J. R.
,
Nirmalanandhan
,
V. S.
,
Bradica
,
G.
, and
Butler
,
D. L.
, 2006, “
Effects of Mechanical Stimulation on the Biomechanics and Histology of Stem Cell-Collagen Sponge Constructs for Rabbit Patellar Tendon Repair
,”
Tissue Eng.
1076-3279,
12
(
8
), pp.
2291
2300
.
4.
Altman
,
G. H.
,
Lu
,
H. H.
,
Horan
,
R. L.
,
Calabro
,
T.
,
Ryder
,
D.
,
Kaplan
,
D. L.
,
Stark
,
P.
,
Martin
,
I.
,
Richmond
,
J. C.
, and
Vunjak-Novakovic
,
G.
, 2002, “
Advanced Bioreactor With Controlled Application of Multi-Dimensional Strain for Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
6
), pp.
742
749
.
5.
Butler
,
D. L.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Shearn
,
J. T.
,
Gooch
,
C.
, and
Awad
,
H.
, 2008, “
Functional Tissue Engineering for Tendon Repair: A Multidisciplinary Strategy Using Mesenchymal Stem Cells, Bioscaffolds, and Mechanical Stimulation
,”
J. Orthop. Res.
,
26
(
1
), pp.
1
9
. 0736-0266
6.
Honda
,
K.
,
Ohno
,
S.
,
Tanimoto
,
K.
,
Ijuin
,
C.
,
Tanaka
,
N.
,
Doi
,
T.
,
Kato
,
Y.
, and
Tanne
,
K.
, 2000, “
The Effects of High Magnitude Cyclic Tensile Load on Cartilage Matrix Metabolism in Cultured Chondrocytes
,”
Eur. J. Cell Biol.
,
79
(
9
), pp.
601
609
. 0171-9335
7.
Fox
,
D. B.
,
Cook
,
J. L.
,
Kuroki
,
K.
, and
Cockrell
,
M.
, 2006, “
Effects of Dynamic Compressive Load on Collagen-Based Scaffolds Seeded With Fibroblast-Like Synoviocytes
,”
Tissue Eng.
1076-3279,
12
(
6
), pp.
1527
1537
.
8.
Lee
,
C. R.
,
Grodzinsky
,
A. J.
, and
Spector
,
M.
, 2003, “
Biosynthetic Response of Passaged Chondrocytes in a Type II Collagen Scaffold to Mechanical Compression
,”
J. Biomed. Mater. Res.
0021-9304,
64A
(
3
), pp.
560
569
.
9.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
, 1989, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
0736-0266,
7
(
5
), pp.
619
636
.
10.
Kisiday
,
J. D.
,
Jin
,
M.
,
DiMicco
,
M. A.
,
Kurz
,
B.
, and
Grodzinsky
,
A. J.
, 2004, “
Effects of Dynamic Compressive Loading on Chondrocyte Biosynthesis in Self-Assembling Peptide Scaffolds
,”
J. Biomech.
,
37
(
5
), pp.
595
604
. 0021-9290
11.
Caterson
,
E. J.
,
Nesti
,
L. J.
,
Li
,
W. J.
,
Danielson
,
K. G.
,
Albert
,
T. J.
,
Vaccaro
,
A. R.
, and
Tuan
,
R. S.
, 2001, “
Three-Dimensional Cartilage Formation by Bone Marrow-Derived Cells Seeded in Polylactide/Alginate Amalgam
,”
J. Biomed. Mater. Res.
0021-9304,
57
(
3
), pp.
394
403
.
12.
Haraldsson
,
B. T.
,
Aagaard
,
P.
,
Krogsgaard
,
M.
,
Alkjaer
,
T.
,
Kjaer
,
M.
, and
Magnusson
,
S. P.
, 2005, “
Region-Specific Mechanical Properties of the Human Patella Tendon
,”
J. Appl. Physiol.
,
98
(
3
), pp.
1006
1012
. 0021-8987
13.
Woo
,
S. L.
, 1982, “
Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties
,”
Biorheology
,
19
(
3
), pp.
385
396
. 0006-355X
14.
Waldman
,
S. D.
,
Couto
,
D. C.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
, 2006, “
Single Application of Cyclic Loading can Accelerate Matrix Deposition and Enhance the Properties of Tissue-Engineered Cartilage
,”
Osteoarthritis Cartilage
,
14
(
4
), pp.
323
330
. 1063-4584
15.
Aufderheide
,
A. C.
, and
Athanasiou
,
K. A.
, 2006, “
Direct Compression Stimulator for Articular Cartilage and Meniscal Explants
,”
Ann. Biomed. Eng.
0090-6964,
34
(
9
), pp.
1463
1474
.
16.
Baker
,
B. M.
, and
Mauck
,
R. L.
, 2007, “
The Effect of Nanofiber Alignment on the Maturation of Engineered Meniscus Constructs
,”
Biomaterials
,
28
(
11
), pp.
1967
1977
. 0142-9612
17.
Owen
,
J. R.
, and
Wayne
,
J. S.
, 2006, “
Influence of a Superficial Tangential Zone Over Repairing Cartilage Defects: Implications for Tissue Engineering
,”
Biomech. Model. Mechanobiol.
,
5
(
2-3
), pp.
102
110
. 1617-7959
You do not currently have access to this content.