A uniaxial cyclic stretch apparatus is designed and developed for tissue engineering research. The biostretch apparatus employs noncontact electromagnetic force to uniaxially stretch a rectangular Gelfoam® or RTV silicon scaffold. A reliable controller is implemented to control four stretch parameters independently: extent, frequency, pattern, and duration of the stretch. The noncontact driving force together with the specially designed mount allow researchers to use standard Petri dishes and commercially available CO2 incubators to culture an engineered tissue patch under well-defined mechanical conditions. The culture process is greatly simplified over existing processes. Further, beyond traditional uniaxial stretch apparatuses, which provide stretch by fixing one side of the scaffolds and stretching the other side, the new apparatus can also apply uniaxial stretch from both ends simultaneously. Using the biostretch apparatus, the distributions of the strain on the Gelfoam® and GE RTV 6166 silicon scaffolds are quantitatively analyzed.

1.
Brown
,
T. D.
, 2000, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
0021-9290,
33
, pp.
3
14
.
2.
Leor
,
J.
,
Amsalem
,
Y.
, and
Cohen
,
S.
, 2005, “
Cells, Scaffolds, and Molecules for Myocardial Tissue Engineering
,”
Pharmacol. Ther.
0163-7258,
105
, pp.
151
163
.
3.
Freed
,
L. E.
,
Guilak
,
F.
,
Guo
,
X. E.
,
Gray
,
M. L.
,
Tranquillo
,
R.
,
Holmes
,
J. W.
,
Radisic
,
M.
,
Sefton
,
M. V.
,
Kaplan
,
D.
, and
Vunjak-Novakovic
,
G.
, 2006, “
Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling
,”
Tissue Eng.
1076-3279,
12
(
12
), pp.
3285
3305
.
4.
Powell
,
C. A.
,
Smiley
,
B. L.
,
Mills
,
J.
, and
Vandenburgh
,
H. H.
, 2002, “
Mechanical Stimulation Improves Tissue-Engineered Human Skeletal Muscle
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
283
(
5
), pp.
C1557
C1565
.
5.
Akhyari
,
P.
,
Fedak
,
P. W. M.
,
Weisel
,
R. D.
,
Lee
,
T.-Y.
,
Verma
,
J. S.
,
Mickle
,
D. A. G.
, and
Li
,
R. K.
, 2002, “
Mechanical Stretch Regimen Enhances the Formation of Bioengineered Autologous Cardiac Muscle Grafts
,”
Circulation
0009-7322,
106
, pp.
I137
I142
.
6.
Fink
,
C.
,
Ergun
,
S.
,
Kralisch
,
D.
,
Remmers
,
U.
,
Weil
,
J.
, and
Eschenhagen
,
T.
, 2000, “
Chronic Stretch of Engineered Heart Tissue Induces Hypertrophy and Functional Improvement
,”
FASEB J.
0892-6638,
14
, pp.
669
679
.
7.
Eschenhagen
,
T.
, and
Zimmermann
,
W. H.
, 2005, “
Engineering Myocardial Tissue
,”
Circ. Res.
0009-7330,
97
, pp.
1220
1231
.
8.
Feng
,
Z. G.
,
Matsumoto
,
T.
,
Nomura
,
Y.
, and
Nakamura
,
T.
, 2005. “
An Electro-Tensile Bioreactor for 3-D Culturing of Cardiomyocytes
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
24
(
4
), pp.
73
79
.
9.
Skinner
,
S. J. M.
, 1989, “
Fetal Breathing Movements: A Mechanical Stimulus for Fetal Lung Cell Growth and Differentiation
,”
Advances in Fetal Physiology
,
B. M.
Johnson
and
P. D.
Gluckman
, eds.,
Perinatology
,
Ithaca, NY
, pp.
133
141
.
10.
Liu
,
M. Y.
,
Skinner
,
S. J. M.
,
Xu
,
J.
,
Han
,
R. N. N.
,
Tanswell
,
A. K.
, and
Post
,
M.
, 1992, “
Stimulation of Fetal Rat Lung Cell Proliferation In Vitro by Mechanical Strain
,”
Am. J. Physiol.
0002-9513,
263
, pp.
L376
L383
.
11.
Yang
,
X.
,
Vezeridis
,
P. S.
,
Nicholas
,
B.
,
Crisco
,
J. J.
,
Moore
,
D. C.
, and
Chen
,
Q.
, 2006, “
Differential Expression of Type X Collagen in a Mechanically Active 3-D Chondrocyte Culture System: A Quantitative Study
,”
J. Orthop. Res.
0736-0266,
1
(
1
), p.
15
.
12.
Auluch
,
A.
,
Mudera
,
V.
,
Hunt
,
N. P.
, and
Lewis
,
M. P.
, 2005, “
A Three-Dimensional In Vitro Model System to Study the Adaptation of Craniofacial Skeletal Muscle Following Mechanostimulation
,”
Eur. J. Oral Sci.
0909-8836,
113
, pp.
218
224
.
13.
Boublik
,
J.
,
Park
,
H.
,
Radisic
,
M.
,
Tognana
,
E.
,
Chen
,
F.
,
Pei
,
M.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2005, “
Mechanical Properties and Remodeling of Hybrid Cardiac Constructs Made from Heart Cells, Fibrin, and Biodegradable, Elastomeric Knitted Fabric
,”
Tissue Eng.
1076-3279,
11
, pp.
1122
1132
.
14.
Liu
,
M. Y.
,
Montazeri
,
S.
,
Jedlovsky
,
T.
,
Wert
,
R. V.
,
Zhang
,
J.
,
Li
,
R. K.
, and
Yan
,
J.
, 1999, “
Bio-Stretch, A Computerized Cell Strain Apparatus for Three-Dimensional Organotypic Cultures
,”
In Vitro Cell. Dev. Biol.: Anim.
1071-2690,
35
, pp.
87
93
.
15.
Liu
,
M. Y.
, and
Post
,
M.
, 2000, “
Cellular Responses to Mechanical Stress Invited Review: Mechanochemical Signal Transduction in the Fetal Lung
,”
J. Appl. Physiol.
8750-7587,
89
(
5
), pp.
2078
2084
.
16.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2004, “
An Analysis of the Complete Strain Field Within Flexercell Membranes
,”
J. Biomech.
0021-9290,
37
(
12
), pp.
1923
1928
.
17.
Clark
,
C. B.
,
Burkholder
,
T. J.
, and
Frangos
,
J. A.
, 2001, “
Uniaxial Strain System to Investigate Strain Rate Regulation In Vitro
,”
Rev. Sci. Instrum.
0034-6748,
72
(
5
), pp.
2415
2422
.
18.
Coletti
,
D.
,
Teodori
,
L.
,
Albertini
,
M. C.
,
Rocchi
,
M.
,
Pristera
,
A.
,
Fini
,
M.
,
Molinaro
,
M.
, and
Adamo
,
S.
, 2007, “
Static Magnetic Fields Enhance Skeletal Muscle Differentiation In Vitro by Improving Myoblast Alignment
,”
Cytometry, Part A
1552-4922,
71
(
10
), pp.
846
856
.
19.
Tranquillo
,
R. T.
,
Girton
,
T. S.
,
Bromberek
,
B. A.
,
Triebes
,
T. G.
, and
Mooradian
,
D. L.
, 1996, “
Magnetically Orientated Tissue-Equivalent Tubes: Application to a Circumferentially Orientated Media-Equivalent
,”
Biomaterials
0142-9612,
17
, pp.
349
357
.
20.
Fassina
,
L.
,
Visai
,
L.
,
Benazzo
,
F.
,
Benedetti
,
L.
,
Calligaro
,
A.
,
Cusella De Angelis
,
M. G.
,
Farina
,
A.
,
Maliardi
,
V.
, and
Magenes
,
G.
, 2006, “
Effects of Electromagnetic Stimulation on Calcified Matrix Production by SAOS-2 Cells Over a Polyurethane Porous Scaffold
,”
Tissue Eng.
1076-3279,
12
(
7
), pp.
1985
1999
.
You do not currently have access to this content.