Distal forearm fracture is one of the most frequently observed osteoporotic fractures, which may occur as a result of low energy falls such as falls from a standing height and may be linked to the osteoporotic nature of the bone, especially in the elderly. In order to prevent the occurrence of radius fractures and their adverse outcomes, understanding the effect of both extrinsic and intrinsic contributors to fracture risk is essential. In this study, a nonlinear fracture mechanics-based finite element model is applied to human radius to assess the influence of extrinsic factors (load orientation and load distribution between scaphoid and lunate) and intrinsic bone properties (age-related changes in fracture properties and bone geometry) on the Colles’ fracture load. Seven three-dimensional finite element models of radius were created, and the fracture loads were determined by using cohesive finite element modeling, which explicitly represented the crack and the fracture process zone behavior. The simulation results showed that the load direction with respect to the longitudinal and dorsal axes of the radius influenced the fracture load. The fracture load increased with larger angles between the resultant load and the dorsal axis, and with smaller angles between the resultant load and longitudinal axis. The fracture load also varied as a function of the load ratio between the lunate and scaphoid, however, not as drastically as with the load orientation. The fracture load decreased as the load ratio (lunate/scaphoid) increased. Multiple regression analysis showed that the bone geometry and the load orientation are the most important variables that contribute to the prediction of the fracture load. The findings in this study establish a robust computational fracture risk assessment method that combines the effects of intrinsic properties of bone with extrinsic factors associated with a fall, and may be elemental in the identification of high fracture risk individuals as well as in the development of fracture prevention methods including protective falling techniques. The additional information that this study brings to fracture identification and prevention highlights the promise of fracture mechanics-based finite element modeling in fracture risk assessment.

1.
O’Neill
,
T. W.
,
Cooper
,
C.
,
Finn
,
J. D.
,
Lunt
,
M.
,
Purdie
,
D.
,
Reid
,
D. M.
,
Rowe
,
R.
,
Woolf
,
A. D.
, and
Wallace
,
W. A.
, 2001, “
Incidence of Distal Forearm Fracture in British Men and Women
,”
Osteoporosis Int.
0937-941X,
12
(
7
), pp.
555
558
.
2.
Holmberg
,
A. H.
,
Johnell
,
O.
,
Nilsson
,
P. M.
,
Nilsson
,
J.
,
Berglund
,
G.
, and
Akesson
,
K.
, 2006, “
Risk Factors for Fragility Fracture in Middle Age. A Prospective Population-Based Study of 33,000 Men and Women
,”
Osteoporosis Int.
0937-941X,
17
(
7
), pp.
1065
1077
.
3.
Maravic
,
M.
,
Le Bihan
,
C.
,
Landais
,
P.
, and
Fardellone
,
P.
, 2005, “
Incidence and Cost of Osteoporotic Fractures in France During 2001. A Methodological Approach by the National Hospital Database
,”
Osteoporosis Int.
0937-941X,
16
(
12
), pp.
1475
1480
.
4.
Owen
,
R. A.
,
Melton
,
L. J.
, III
,
Johnson
,
K. A.
,
Ilstrup
,
D. M.
, and
Riggs
,
B. L.
, 1982, “
Incidence of Colles’ Fracture in a North American Community
,”
Am. J. Public Health
0090-0036,
72
(
6
), pp.
605
607
.
5.
Kanis
,
J. A.
,
Johnell
,
O.
,
Oden
,
A.
,
Sembo
,
I.
,
Redlund-Johnell
,
I.
,
Dawson
,
A.
,
De Laet
,
C.
, and
Jonsson
,
B.
, 2000, “
Long-Term Risk of Osteoporotic Fracture in Malmo
,”
Osteoporosis Int.
0937-941X,
11
(
8
), pp.
669
674
.
6.
Chiu
,
J.
, and
Robinovitch
,
S. N.
, 1998, “
Prediction of Upper Extremity Impact Forces During Falls on the Outstretched Hand
,”
J. Biomech.
0021-9290,
31
(
12
), pp.
1169
1176
.
7.
Ashe
,
M. C.
,
Khan
,
K. M.
,
Kontulainen
,
S. A.
,
Guy
,
P.
,
Liu
,
D.
,
Beck
,
T. J.
, and
Mckay
,
H. A.
, 2006, “
Accuracy of pQCT for Evaluating the Aged Human Radius: An Ashing, Histomorphometry and Failure Load Investigation
,”
Osteoporosis Int.
0937-941X,
17
(
8
), pp.
1241
1251
.
8.
Augat
,
P.
,
Iida
,
H.
,
Jiang
,
Y.
,
Diao
,
E.
, and
Genant
,
H. K.
, 1998, “
Distal Radius Fractures: Mechanisms of Injury and Strength Prediction by Bone Mineral Assessment
,”
J. Orthop. Res.
0736-0266,
16
(
5
), pp.
629
635
.
9.
Muller
,
M. E.
,
Webber
,
C. E.
, and
Bouxsein
,
M. L.
, 2003, “
Predicting the Failure Load of the Distal Radius
,”
Osteoporosis Int.
0937-941X,
14
(
4
), pp.
345
352
.
10.
Myers
,
E. R.
,
Hecker
,
A. T.
,
Rooks
,
D. S.
,
Hipp
,
J. A.
, and
Hayes
,
W. C.
, 1993, “
Geometric Variables From DXA of the Radius Predict Forearm Fracture Load In Vitro
,”
Calcif. Tissue Int.
0171-967X,
52
(
3
), pp.
199
204
.
11.
Troy
,
K. L.
, and
Grabiner
,
M. D.
, 2007, “
Asymmetrical Ground Impact of the Hands After a Trip-Induced Fall: Experimental Kinematics and Kinetics
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
10
), pp.
1088
1095
.
12.
Tan
,
J. S.
,
Eng
,
J. J.
,
Robinovitch
,
S. N.
, and
Warnick
,
B.
, 2006, “
Wrist Impact Velocities Are Smaller in Forward Falls Than Backward Falls From Standing
,”
J. Biomech.
0021-9290,
39
(
10
), pp.
1804
1811
.
13.
Kim
,
K. J.
, and
Ashton-Miller
,
J. A.
, 2003, “
Biomechanics of Fall Arrest Using the Upper Extremity: Age Differences
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
4
), pp.
311
318
.
14.
Troy
,
K. L.
, and
Grabiner
,
M. D.
, 2007, “
Off-Axis Loads Cause Failure of the Distal Radius at Lower Magnitudes Than Axial Loads: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1670
1675
.
15.
Kern
,
H.
,
Hilaire
,
J.
, and
Sennwald
,
G.
, 1994, “
Force Transmission Through the Proximal Carpal Row
,”
Advances in the Biomechanics of the Hand and Wrist
,
F.
Schuind
, ed.,
Plenum
,
New York
, pp.
167
176
.
16.
Schuind
,
F.
,
Cooney
,
W. P.
,
Linscheid
,
R. L.
,
An
,
K. N.
, and
Chao
,
E. Y.
, 1995, “
Force and Pressure Transmission Through the Normal Wrist. A Theoretical Two-Dimensional Study in the Posteroanterior Plane
,”
J. Biomech.
0021-9290,
28
(
5
), pp.
587
601
.
17.
Genda
,
E.
, and
Horii
,
E.
, 2000, “
Theoretical Stress Analysis in Wrist Joint—Neutral Position and Functional Position
,”
J. Hand Surg. [Br]
,
25
(
3
), pp.
292
295
.
18.
Horii
,
E.
,
Garcia-Elias
,
M.
,
Bishop
,
A. T.
,
Cooney
,
W. P.
,
Linscheid
,
R. L.
, and
Chao
,
E. Y.
, 1990, “
Effect on Force Transmission Across the Carpus in Procedures Used to Treat Kienbock’s Disease
,”
J. Hand Surg. [Am]
,
15
(
3
), pp.
393
400
.
19.
Short
,
W. H.
,
Werner
,
F. W.
,
Fortino
,
M. D.
, and
Palmer
,
A. K.
, 1992, “
Distribution of Pressures and Forces on the Wrist After Simulated Intercarpal Fusion and Kienbock’s Disease
,”
J. Hand Surg. [Am]
,
17
(
3
), pp.
443
449
.
20.
Pistoia
,
W.
,
Van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Ruegsegger
,
P.
, 2002, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
,
30
(
6
), pp.
842
848
.
21.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
, 1999, “
Load Transfer Analysis of the Distal Radius From In-Vivo High-Resolution CT-Imaging
,”
J. Biomech.
0021-9290,
32
(
8
), pp.
821
828
.
22.
Boutroy
,
S.
,
Van Rietbergen
,
B.
,
Sornay-Rendu
,
E.
,
Munoz
,
F.
,
Bouxsein
,
M. L.
, and
Delmas
,
P. D.
, 2008, “
Finite Element Analysis Based on In Vivo HR-pQCT Images of the Distal Radius Is Associated With Wrist Fracture in Postmenopausal Women
,”
J. Bone Miner. Res.
0884-0431,
23
(
3
), pp.
392
399
.
23.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
, 2007, “
Load Distribution and the Predictive Power of Morphological Indices in the Distal Radius and Tibia by High Resolution Peripheral Quantitative Computed Tomography
,”
Bone
,
41
(
1
), pp.
129
137
.
24.
MacNeil
,
J. A.
, and
Boyd
,
S. K.
, 2008, “
Bone Strength at the Distal Radius Can Be Estimated From High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method
,”
Bone
,
42
(
6
), pp.
1203
1213
.
25.
Melton
,
L. J.
, III
,
Riggs
,
B. L.
,
Van Lenthe
,
G. H.
,
Achenbach
,
S. J.
,
Muller
,
R.
,
Bouxsein
,
M. L.
,
Amin
,
S.
,
Atkinson
,
E. J.
, and
Khosla
,
S.
, 2007, “
Contribution of In Vivo Structural Measurements and Load/Strength Ratios to the Determination of Forearm Fracture Risk in Postmenopausal Women
,”
J. Bone Miner. Res.
0884-0431,
22
(
9
), pp.
1442
1448
.
26.
Pistoia
,
W.
,
Van Rietbergen
,
B.
, and
Ruegsegger
,
P.
, 2003, “
Mechanical Consequences of Different Scenarios for Simulated Bone Atrophy and Recovery in the Distal Radius
,”
Bone
,
33
(
6
), pp.
937
945
.
27.
Cohen
,
A.
,
Dempster
,
D. W.
,
Muller
,
R.
,
Guo
,
X. E.
,
Nickolas
,
T. L.
,
Liu
,
X. S.
,
Zhang
,
X. H.
,
Wirth
,
A. J.
,
Van Lenthe
,
G. H.
,
Kohler
,
T.
,
Mcmahon
,
D. J.
,
Zhou
,
H.
,
Rubin
,
M. R.
,
Bilezikian
,
J. P.
,
Lappe
,
J. M.
,
Recker
,
R. R.
, and
Shane
,
E.
, 2010, “
Assessment of Trabecular and Cortical Architecture and Mechanical Competence of Bone by High-Resolution Peripheral Computed Tomography: Comparison With Transiliac Bone Biopsy
,”
Osteoporosis Int.
0937-941X,
21
(
2
), pp.
263
273
.
28.
Mueller
,
T. L.
,
Van Lenthe
,
G. H.
,
Stauber
,
M.
,
Gratzke
,
C.
,
Eckstein
,
F.
, and
Muller
,
R.
, 2009, “
Regional, Age and Gender Differences in Architectural Measures of Bone Quality and Their Correlation to Bone Mechanical Competence in the Human Radius of an Elderly Population
,”
Bone
,
45
(
5
), pp.
882
891
.
29.
Gdela
,
K.
,
Pietruszczak
,
S.
,
Lade
,
P. V.
, and
Tsopelas
,
P.
, 2008, “
On Colles’ Fracture: An Experimental Study Involving Structural and Material Testing
,”
ASME J. Appl. Mech.
0021-8936,
75
(
3
), p.
031002
.
30.
Pietruszczak
,
S.
,
Gdela
,
K.
,
Webber
,
C. E.
, and
Inglis
,
D.
, 2007, “
On the Assessment of Brittle-Elastic Cortical Bone Fracture in the Distal Radius
,”
Eng. Fract. Mech.
0013-7944,
74
(
12
), pp.
1917
1927
.
31.
Ural
,
A.
, and
Vashishth
,
D.
, 2006, “
Cohesive Finite Element Modeling of Age-Related Toughness Loss in Human Cortical Bone
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
2974
2982
.
32.
Ural
,
A.
, and
Vashishth
,
D.
, 2007, “
Effects of Intracortical Porosity on Fracture Toughness in Aging Human Bone: A μCT-Based Cohesive Finite Element Study
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
625
631
.
33.
Ural
,
A.
, and
Vashishth
,
D.
, 2007, “
Anisotropy of Age-Related Toughness Loss in Human Cortical Bone: A Finite Element Study
,”
J. Biomech.
0021-9290,
40
(
7
), pp.
1606
1614
.
34.
Ural
,
A.
, 2009, “
Prediction of Colles’ Fracture Load in Human Radius Using Cohesive Finite Element Modeling
,”
J. Biomech.
0021-9290,
42
(
1
), pp.
22
28
.
35.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1992, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
40
(
6
), pp.
1377
1397
.
36.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
De Moura
,
M. F.
, 2003, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
0021-9983,
37
(
16
), pp.
1415
1438
.
37.
Brown
,
C. U.
,
Yeni
,
Y. N.
, and
Norman
,
T. L.
, 2000, “
Fracture Toughness Is Dependent on Bone Location—A Study of the Femoral Neck, Femoral Shaft, and the Tibial Shaft
,”
J. Biomed. Mater. Res.
0021-9304,
49
(
3
), pp.
380
389
.
38.
McCalden
,
R. W.
,
Mcgeough
,
J. A.
,
Barker
,
M. B.
, and
Court-Brown
,
C. M.
, 1993, “
Age-Related Changes in the Tensile Properties of Cortical Bone. The Relative Importance of Changes in Porosity, Mineralization, and Microstructure
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
(
8
), pp.
1193
1205
.
39.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
(
6
), pp.
393
405
.
40.
Zioupos
,
P.
, and
Currey
,
J. D.
, 1998, “
Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone With Age
,”
Bone
,
22
(
1
), pp.
57
66
.
41.
Hsu
,
E. S.
,
Patwardhan
,
A. G.
,
Meade
,
K. P.
,
Light
,
T. R.
, and
Martin
,
W. R.
, 1993, “
Cross-Sectional Geometrical Properties and Bone Mineral Contents of the Human Radius and Ulna
,”
J. Biomech.
0021-9290,
26
(
11
), pp.
1307
1318
.
42.
Augat
,
P.
,
Reeb
,
H.
, and
Claes
,
L. E.
, 1996, “
Prediction of Fracture Load at Different Skeletal Sites by Geometric Properties of the Cortical Shell
,”
J. Bone Miner. Res.
0884-0431,
11
(
9
), pp.
1356
1363
.
43.
Myers
,
E. R.
,
Sebeny
,
E. A.
,
Hecker
,
A. T.
,
Corcoran
,
T. A.
,
Hipp
,
J. A.
,
Greenspan
,
S. L.
, and
Hayes
,
W. C.
, 1991, “
Correlations Between Photon Absorption Properties and Failure Load of the Distal Radius In Vitro
,”
Calcif. Tissue Int.
0171-967X,
49
(
4
), pp.
292
297
.
44.
Cezayirlioglu
,
H.
,
Bahniuk
,
E.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
, 1985, “
Anisotropic Yield Behavior of Bone Under Combined Axial Force and Torque
,”
J. Biomech.
0021-9290,
18
(
1
), pp.
61
69
.
45.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
, 1984, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
349
361
.
46.
Lochmüller
,
E. M.
,
Groll
,
O.
,
Kuhn
,
V.
, and
Eckstein
,
F.
, 2002, “
Mechanical Strength of the Proximal Femur as Predicted From Geometric and Densitometric Bone Properties at the Lower Limb Versus the Distal Radius
,”
Bone
,
30
(
1
), pp.
207
216
.
47.
DeGoede
,
K. M.
,
Ashton-Miller
,
J. A.
, and
Schultz
,
A. B.
, 2003, “
Fall-Related Upper Body Injuries in the Older Adult: A Review of the Biomechanical Issues
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
1043
1053
.
48.
Lill
,
C. A.
,
Goldhahn
,
J.
,
Albrecht
,
A.
,
Eckstein
,
F.
,
Gatzka
,
C.
, and
Schneider
,
E.
, 2003, “
Impact of Bone Density on Distal Radius Fracture Patterns and Comparison Between Five Different Fracture Classifications
,”
J. Orthop. Trauma
0890-5339,
17
(
4
), pp.
271
278
.
You do not currently have access to this content.