Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models. This paper presents an analytical method based on thin-shell, beam-on-elastic-foundation and composite materials theories to evaluate the stresses in the anulus fibrosus (AF) of an axisymmetric disk composed of multiple thin lamellae. Large deformations of the soft tissues are accounted for using an iterative method and the anisotropic material properties are derived from a published biaxial experiment. The results are compared to those obtained by FE modeling. The results demonstrate the capability of the analytical model to evaluate the stresses at any location of the simplified AF. It also demonstrates that anisotropy reduces stresses in the lamellae. This novel model is a preliminary step in developing valuable analytical models of IVDs, and represents a distinctive groundwork that is able to sustain future refinements. This paper suggests important features that may be included to improve model realism.

References

1.
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2007
, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
508
516
.
2.
Nachemson
,
A.
,
1960
, “
Lumbar Intradiscal Pressure. Experimental Studies on Post-Mortem Material
,”
Acta Orthop. Scand., Suppl.
,
43
(S43), pp.
1
104
.
3.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
4.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
5.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.
6.
Peacock
,
A.
,
1952
, “
Observations on the Postnatal Structure of the Intervertebral Disc in Man
,”
J. Anat.
,
86
(
2
), pp.
162
179
.
7.
Raj
,
P. P.
,
2007
, “
Intervertebral Disc: Anatomy-Physiology-Pathophysiology-Treatment
,”
Pain Pract.
,
8
(1), pp.
18
44
.
8.
Adams
,
M. A.
,
Dolan
,
P.
, and
McNally
,
D. S.
,
2009
, “
The Internal Mechanical Functioning of Intervertebral Discs and Articular Cartilage, and Its Relevance to Matrix Biology
,”
Matrix Biol.
,
28
(
7
), pp.
384
389
.
9.
Natarajan
,
R. N.
,
Williams
,
J. R.
,
Lavender
,
S. A.
,
An
,
H. S.
, and
Andersson
,
G. B.
,
2008
, “
Relationship Between Disc Injury and Manual Lifting: A Poroelastic Finite Element Model Study
,”
Proc. Inst. Mech. Eng., Part H
,
222
(
2
), pp.
195
207
.
10.
Guo
,
Z.
,
Shi
,
X.
,
Peng
,
X.
, and
Caner
,
F.
,
2012
, “
Fibre–Matrix Interaction in the Human Annulus Fibrosus
,”
J. Biomech. Behav. Biomed. Mater.
,
5
(
1
), pp.
193
205
.
11.
Ezquerro
,
F.
,
Vacas
,
F. G. I.
,
Postigo
,
S.
,
Prado
,
M.
, and
Simon
,
A.
,
2011
, “
Calibration of the Finite Element Model of a Lumbar Functional Spinal Unit Using an Optimization Technique Based on Differential Evolution
,”
Med. Eng. Phys.
,
33
(
1
), pp.
89
95
.
12.
Niemeyer
,
F.
,
Wilke
,
H.-J.
, and
Schmidt
,
H.
,
2012
, “
Geometry Strongly Influences the Response of Numerical Models of the Lumbar Spine—A Probabilistic Finite Element Analysis
,”
J. Biomech.
,
45
(
8
), pp.
1414
1423
.
13.
Hickey
,
D. S.
, and
Hukins
,
D. W.
,
1980
, “
Relation Between the Structure of the Annulus Fibrosus and the Function and Failure of the Intervertebral Disc
,”
Spine (Philadelphia Pa 1976)
,
5
(
2
), pp.
106
116
.
14.
Hukins
,
D. W. L.
,
1992
, “
A Simple Model for the Function of Proteoglycans and Collagen in the Response to Compression of the Intervertebral Disc
,”
Proc. Biol. Sci. R. Soc.
,
249
(
1326
), pp.
281
285
.
15.
Prud'Homme
,
D.
,
2008
,
Mécanisme de la hernie discale: modélisation non-linéaire
,
École de technologie supérieure
,
Montréal, QC, Canada
.
16.
McNally
,
D. S.
, and
Arridge
,
R. G. C.
,
1995
, “
An Analytical Model of Intervertebral Disc Mechanics
,”
J. Biomech.
,
28
(
1
), pp.
53
68
.
17.
Demers
,
S.
,
Bouzid
,
A.-H.
, and
Nadeau
,
S.
,
2013
, “
On the Modeling of an Intervertebral Disc Using a Novel Large Deformation Multi-Shell Approach
,”
ASME J. Biomech. Eng.
,
135
(
5
), p.
051003
.
18.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.
19.
Eijkelkamp
,
M. F.
,
2002
, “
On the Development of an Artificial Intervertebral Disc
,” Ph.D. thesis, University of Groningen, Groningen, The Netherlands.
20.
Zingoni
,
A.
,
1995
, “
On Membrane Solutions for Elevated Shell-of-Revolution Tanks of Certain Meridional Profiles
,”
Thin-Walled Struct.
,
22
(
2
), pp.
121
142
.
21.
Johnson
,
E. F.
,
Chetty
,
K.
,
Moore
,
I. M.
,
Stewart
,
A.
, and
Jones
,
W.
,
1982
, “
The Distribution and Arrangement of Elastic Fibres in the Intervertebral Disc of the Adult Human
,”
J. Anat.
,
135
(2), pp.
301
309
.
22.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
,
Setton
,
L. A.
, and
Mow
,
V. C.
,
1996
, “
Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc
,”
Spine
,
21
(
10
), pp.
1174
1184
.
23.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
,
1996
, “
‘Stress' Distributions Inside Intervertebral Discs
,”
J. Bone Jt. Surg.
,
78
(
6
), pp.
965
972
.
24.
Proteau
,
R.-A.
,
2014
,
Repères pour l'évaluation des risques lors de la manutention de charges
,
Objectif Prévention
,
37
(1), pp. 11–13.
25.
Nachemson
,
A.
,
1981
, “
Disc Pressure Measurements
,”
Spine
,
6
(
1
), pp.
93
97
.
26.
Lamé
,
G.
,
1866
,
Leçons sur la Théorie Mathématique de l'Élasticité des Corps Solides
, 2nd ed.,
Gauthier-Villars
,
Paris, France
.
27.
Little
,
J. P.
,
Adam
,
C. J.
,
Evans
,
J. H.
,
Pettet
,
G. J.
, and
Pearcy
,
M. J.
,
2007
, “
Nonlinear Finite Element Analysis of Anular Lesions in the L4/5 Intervertebral Disc
,”
J. Biomech.
,
40
(
12
), pp.
2744
2751
.
28.
Zingoni
,
A.
,
2001
, “
Stresses and Deformations in Egg-Shaped Sludge Digestors: Discontinuity Effects
,”
Eng. Struct.
,
23
(
11
), pp.
1373
1382
.
29.
Gibson
,
R. F.
,
2007
,
Principles of Composite Material Mechanics
,
McGraw-Hill
,
New York
.
30.
O'Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
,
2012
, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
(3), pp.
493
503
.
31.
Vasiliev
,
V. V.
,
2009
,
Composite Pressure Vessels, Analysis, Design, and Manufacturing
,
Bull Ridge Publishing
,
Blacksburg, VA
.
32.
ANSYS
,
2011
,
Release 14.0. Software
,
ANSYS, Inc.
,
Southpointe, PA
.
33.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2010
, “
Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration
,”
J. Orthop. Res.
,
29
(4), pp.
547
555
.
34.
Smith
,
L. J.
, and
Fazzalari
,
N. L.
,
2009
, “
The Elastic Fibre Network of the Human Lumbar Anulus Fibrosus: Architecture, Mechanical Function and Potential Role in the Progression of Intervertebral Disc Degeneration
,”
Eur. Spine J.
,
18
(
4
), pp.
439
448
.
35.
Rodrigues
,
S. A.
,
Wade
,
K. R.
,
Thambyah
,
A.
, and
Broom
,
N. D.
,
2012
, “
Micromechanics of Annulus-End Plate Integration in the Intervertebral Disc
,”
Spine J.
,
12
(
2
), pp.
143
150
.
36.
Noailly
,
J.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2011
, “
On the Collagen Criss-Cross Angles in the Annuli Fibrosi of Lumbar Spine Finite Element Models
,”
Biomech. Model. Mechanobiol.
,
10
(
2
), pp.
203
219
.
37.
Klein
,
J. A.
, and
Hukins
,
D. W.
,
1982
, “
X-Ray Diffraction Demonstrates Reorientation of Collagen Fibres in the Annulus Fibrosus During Compression of the Intervertebral Disc
,”
Biochim. Biophys. Acta
,
717
(
1
), pp.
61
64
.
38.
Ambard
,
D.
, and
Cherblanc
,
F.
,
2009
, “
Mechanical Behavior of Annulus Fibrosus: A Microstructural Model of Fibers Reorientation
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2256
2265
.
39.
Guerin
,
H. A.
, and
Elliott
,
D. M.
,
2006
, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.
40.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Chichester, UK
.
41.
Gunzburg
,
R.
,
Hutton
,
W. C.
,
Crane
,
G.
, and
Fraser
,
R. D.
,
1992
, “
Role of the Capsulo-Ligamentous Structures in Rotation and Combined Flexion-Rotation of the Lumbar Spine
,”
J. Spinal Disord.
,
5
(
4
), pp.
1
7
.
42.
Roaf
,
R.
,
1960
, “
A Study of the Mechanics of Spinal Injuries
,”
J. Bone Jt. Surg.
,
42
(4), pp.
810
823
.
You do not currently have access to this content.